Accurate Modeling of the Redshift-Space Distortions of Biased Tracers based on arXiv:1106.4562

Takahiro Nishimichi (IPMU)

with

RESCEU/DENET summer school in Aso, Kumamoto, July 28 2011

Atsushi Taruya (RESCEU)

Dark Energy? Modified Gravity?

expansion history in a DE model may be mimicked by a MG model

geometrical + growth tests are essential!

Anisotropies in galaxy clustering

Redshift-space distortions (contd.): TNS model

Exact formula for the z-space P(k) $P^{(S)}(\boldsymbol{k}) = \int d^3 \boldsymbol{x} \, e^{i \boldsymbol{k} \cdot \boldsymbol{x}} \langle e^{-ik\mu f \Delta u_z}$

 $\times \left\{ \delta(\boldsymbol{r}) + f \nabla_z u_z(\boldsymbol{r}) \right\} \left\{ \delta(\boldsymbol{r}') + f \nabla_z u_z(\boldsymbol{r}') \right\} \right\}$

notice $\langle e^A B C \rangle \neq \langle e^A \rangle \langle B C \rangle$

with a help of cumulant expansion theorem $P(k,\mu) = D_{\rm f}(k\,\mu\,f\sigma_{\rm v})$ $\times \left[P_{\delta\delta}(k) + 2 f \mu^2 P_{\delta\theta}(k) + f^2 \mu^4 P_{\theta\theta}(k) \right]$

$$+ A(k,\mu;f) + B(k,\mu;f)$$

A term \propto cross-bispectrum of $\delta \& \theta$ new terms!

B term \propto sum of convolutions of P_{$\delta\theta$} & P_{$\theta\theta$}

Taruya, Nishimichi, Saito ('10)

Redshift-space distortions (contd.): TNS model

Exact formula for the z-space P(k)

 $P^{(S)}(\boldsymbol{k}) = \int d^3 \boldsymbol{x} \, e^{i \boldsymbol{k} \cdot \boldsymbol{x}} \langle e^{-ik\mu f \Delta u_z}$ $\times \left\{ \delta(\boldsymbol{r}) + f \nabla_z u_z(\boldsymbol{r}) \right\} \left\{ \delta(\boldsymbol{r}') + f \nabla_z u_z(\boldsymbol{r}') \right\} \right\}$

notice $\langle e^A B C \rangle \neq \langle e^A \rangle \langle B C \rangle$

with a help of cumulant expansion theorem $P(k,\mu) = D_{\rm f}(k\,\mu\,f\sigma_{\rm v})$ $\times \left[P_{\delta\delta}(k) + 2 f \mu^2 P_{\delta\theta}(k) + f^2 \mu^4 P_{\theta\theta}(k) \right]$

$$+A(k,\mu;f)+B(k,\mu;f)$$

A term \propto cross-bispectrum of $\delta \& \theta$ new terms!

B term \propto sum of convolutions of P_{$\delta\theta$} & P_{$\theta\theta$}

Taruya, Nishimichi, Saito ('10)

RSDs for biased tracers?

Analysis

- Large N-body simulations (L=1.14Gpc/h, N=1,280³) starting with 2LPT initial conditions x 15 realizations √ 9 halo catalogs over a wide mass range @ z=0.35
 - $\sqrt{9}$ halo catalogs over a wide mass range @ z=0.35 \checkmark volume & number density = SDSS DR7 LRGs
 - \checkmark b(k) is directly measured from r-space clustering
 - $\checkmark \sigma_v$ is treated as a free fitting parameter

Sample	bin 1 (light)	bin 2	bin 3	bin 4	bin 5	bin 6	ĺ
M_{\min}	1.77×10^{12}	2.49×10^{12}	3.54×10^{12}	4.98×10^{12}	7.09×10^{12}	1.00×10^{13}	1.
$M_{\rm max}$	5.54×10^{12}	1.02×10^{13}	1.74×10^{13}	2.66×10^{13}	4.04×10^{13}	6.76×10^{13}	1.
$\overline{M}_{ m h}$	2.96×10^{12}	4.65×10^{12}	7.08×10^{12}	9.37×10^{12}	1.47×10^{13}	2.18×10^{13}	3.
n_h	1.57×10^{-3}	1.26×10^{-3}	9.46×10^{-4}	6.87×10^{-4}	4.87×10^{-4}	3.47×10^{-4}	2.
b_0	1.08	1.16	1.25	1.35	1.47	1.62	8

mass: $h^{-1}M_{sun}$, density: $h^{3}Mpc^{-3}$

1.1

0.9

^{2hm}(k)/P_m(k)

Result

Goodness of fits

best-fit values of σ_v :

- smaller for streaming model
- consistent with 0 for massive halos
- consistent with the linear theory for TNS
- does not depend the halo mass

goodness of fit:

- worse for streaming model
- especially for massive halos
- \bullet reduced χ^2 are close to 1 for TNS
- independent of the halo mass

- 2 parameter fit to N-body data: f and σ_v
 - \checkmark streaming model
 - seams OK only at k_{max}<0.1h/Mpc
 - typically ~5% underestimate of f
 - ✓ TNS model
 - gives unbiased estimate of f
 - up to $k_{max} \sim 0.2 \text{ h/Mpc}$

- 2 parameter fit to N-body data: f and σ_v
 - \checkmark streaming model
 - seams OK only at k_{max}<0.1h/Mpc
 - typically ~5% underestimate of f
 - ✓ TNS model
 - gives unbiased estimate of f
 - up to $k_{max} \sim 0.2 \text{ h/Mpc}$

- 2 parameter fit to N-body data: f and σ_v
 - \checkmark streaming model
 - seams OK only at k_{max}<0.1h/Mpc
 - typically ~5% underestimate of f
 - ✓ TNS model
 - gives unbiased estimate of f
 - up to $k_{max} \sim 0.2 \text{ h/Mpc}$

- 2 parameter fit to N-body data: f and σ_v
 - \checkmark streaming model
 - seams OK only at k_{max}<0.1h/Mpc
 - typically ~5% underestimate of f
 - ✓ TNS model
 - gives unbiased estimate of f
 - up to $k_{max} \sim 0.2 \text{ h/Mpc}$

- 2 parameter fit to N-body data: f and σ_v
 - \checkmark streaming model
 - seams OK only at k_{max}<0.1h/Mpc
 - typically ~5% underestimate of f
 - ✓ TNS model
 - gives unbiased estimate of f
 - up to $k_{max} \sim 0.2 \text{ h/Mpc}$

- 2 parameter fit to N-body data: f and σ_v
 - \checkmark streaming model
 - seams OK only at k_{max}<0.1h/Mpc
 - typically ~5% underestimate of f
 - ✓ TNS model
 - gives unbiased estimate of f
 - up to $k_{max} \sim 0.2 \text{ h/Mpc}$

Future/on-going surveys

Fish	1.0								
	0.9								
Ass	0.8								
	h ⁻³ Gpc ³ h ³ Mpc ⁻³					₌ h Mpc⁻¹	_	1	
		z_c	V	n_g	b	$k_{\rm max}$	f(E	ΛL
	BOSS	0.45	1.1	3×10^{-4}	2.2	0.15		0.7	111
		0.55	1.5	3×10^{-4}	2.2	0.15		<u></u>	
		0.65	1.9	3×10^{-4}	2.2	0.15			
	SuMIRe-PFS	0.7	0.8	3×10^{-4}	1.5	0.2		0.6	/ /
		0.9	1.1	3×10^{-4}	1.5	0.2		\equiv	BOS
		1.1	1.4	4×10^{-4}	1.5	0.2		Ź	,003
		1.3	1.6	4×10^{-4}	1.5	0.2		0.5	
		1.5	1.7	4×10^{-4}	1.5	0.2		0.0	0.5
	HETDEX	3.0	3.0	2.5×10^{-4}	2.5	0.4			

Summary

- tested the clustering of halos in z-space by N-body simulations ...
 - frequently used phenomenological model is not sufficient ~5% systematic bias in f(z)
 - correction terms in TNS model
 - more prominent for more massive halos or more biased objects
- codes for our model are publicly available!! visit CPT library: <u>http://www-utap.phys.s.u-tokyo.ac.jp/~ataruya/cpt_pack.html</u>

