
Roy Maartens      RESCEU/DENET 

        Summer School 

Western Cape &  

Portsmouth      July 2011 

 

        

 

 

 

 

 

Models for the accelerating Universe 



Lecture 1 
 
Overview of the accelerating Universe. 
Dark Energy models in GR. 
Observations of background and structure growth. 
 
Lecture 2 
 
Modified gravity as an alternative to DE. 
f(R) and DGP – simplest models. 
Testing GR with cosmology. 
 
Lecture 3 
 
Inhomogeneous models of the accelerating Universe. 
Testing the Copernican Principle and homogeneity. 
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Lecture 1:  
Dark energy models in GR 



The puzzle of acceleration 
 

 

• Galaxies are moving apart from each other –  

   the Universe is expanding. 
      Historical note: 

       Discovered by Lemaitre, then Hubble. 

        Einstein in 1915 believed the Universe must be static. 
        His static Universe model wanted to collapse –  
        so he introduced an „anti-gravity‟ constant Λ to stop this. 
 

• Galaxies attract each other gravitationally –  
   so we expect the expansion to slow down. 
   But observations in the 1980s-1990s showed –  

   the expansion is accelerating. 
• The „anti-gravity‟ effect of Λ can cause this: 
    so Λ returned, but for a new reason. 
    Λ is the simplest model of DARK ENERGY. 



 The key evidence for acceleration: 

    supernovae are more dim than 
they should be 

 (this is backed up by other data). 

   

  

 

zero-acceleration curve 



Friedmann’s expanding universe 
 
Suppose that the spatial Universe is as simple 
as possible, i.e. all points and directions 
are equivalent: 

 
 

Each time instant =  
a 3-space of  
constant curvature. 

 
a(t) measures the 

expansion; it obeys 
the Friedmann equation: 
 
 
 
 
 
     expansion rate  = matter/radiation + dark energy + curvature 
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Solutions of Friedmann equation: Λ=0 

K=0 

K=-1 

K=1 



Solutions of Friedmann equation: Λ>0 

observations suggest 
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Acceleration implies Dark Energy? 
 
If:  
 The Universe is well described by a perturbed Friedmann 
   model – with a fixed background (no backreaction). 
 GR holds.  
 The expansion is accelerating. 
 

Then: the acceleration is due to DE 
 
 
 
 

 
DE is a medium with w<-1/3. 
Simplest DE is Λ, with w=-1  (and K=0). 
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Inflation creates tiny fluctuations in density. 

Gravity is attractive –  

 Small over-densities grow more over-dense. 

 Small under-densities become more under-dense. 

  

    “nonlinear structure formation implies acceleration” 

 

 
 

 Cold Dark Matter (CDM) forms structure first – baryonic 
matter is delayed by radiation pressure. 

 After photon decoupling, baryonic matter falls into the 
CDM „halos‟ (potential wells) – the Cosmic Web begins to 
take shape. 

 

 

 

 

 

Friedmann perturbed universe 



The growth of structure 

      Galaxy clusters, voids, filaments, walls 

      (the Cosmic Web) 

 

 

 

 

 

time    Galaxies form 

         Stars form 

 

   Hydrogen condenses in CDM framework 

   

         Photon temperature fluctuations 

      (over- and under-densities in matter) 

                 CDM condenses into structure 

 

      Photons + baryonic matter = plasma 

 

 

 

 

 

 



    Millennium Simulation 

The simulated Cosmic Web (CDM only) 



 

(WMAP) 

The standard cosmological model (ΛCDM) 

= smooth background + perturbations 

 

      SDSS, DES 

 

, PLANCK 

 

Nearly smooth plasma 

Small ripples in  

cosmic microwave 

background (CMB) 

Ripples grow into 

stars, galaxies, … energy low  ,0a
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 ΛCDM fits the high-precision data 

  

   

Galaxy distribution 

Cosmic Microwave Background  

SDSS data 

WMAP data 
LCDM prediction 
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The puzzle of Λ as DE 
 

 
• It is the simplest model we have. 
• It is compatible with all data up to now. 
• No other model gives a better statistical fit. 
• But …. particle physics theory cannot explain it. 

  It is incredibly small – much smaller than all known 
  energy scales: 
 
 

 
 

  And very fine-tuned („coincidence problem‟):  
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 Energy-momentum tensor is Lorentz-invariant –  

 and thus indistinguishable from vacuum energy: 

 

 
 Huge clash between „prediction‟ (based on QFT) and 
observation: 
 
 
 
 

 Some attempts to resolve this: 
 Unimodular gravity  

   The vacuum does not gravitate – Λ is a new 
gravitational constant. 

 

  

  

 
Λ as quantum vacuum energy 
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  String theory „Multiverse‟ and „Landscape‟  

   There are a huge number of fields in string theory, 
and a huge number of possible vacua („landscape‟). 

   Perhaps each vacuum corresponds to a separate 
„universe‟ – each with its own value of vacuum 
energy. 

   Some universes will have  

   galaxies and life,  

   others will not. 

 

 

 

 Other attempts include 

 „Degravitation‟ 
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What are the options for cosmology? 
 

 GR + Perturbed Friedmann + Λ 
 We let particle physics deal with the Λ problem and 

we test ΛCDM against the data. 
 GR + Perturbed Friedmann + dynamical DE 
 We try variable DE (solve coincidence problem?): 

 
 

 Modified Gravity + Perturbed Friedmann – no DE 
     We try to do away with DE (must assume that 

      vacuum does not gravitate), and we replace GR: 

  
 

 GR + Nonlinear effects –  no DE + no acceleration 

 We try to do away with DE (must assume vacuum 

does not gravitate), but we keep GR. 
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Testing ΛCDM 
 

GR + Perturbed Friedmann + Λ (flat, K=0) 
 

– so far it passes all observational tests 

– we must continue to test against new observations 
– we can devise tests for deviations from w=-1. 
 

We can use parametrizations of w(z), e.g. 
 
                 or 
 

These can be useful – for example, using w=w0  gives 
an indication whether w=-1 is violated. But:  
 * w(z) does not describe a physical model. 

 * Observational constraints depend on parametrization.  

 * We cannot compute DE perturbations. 
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 Null tests of ΛCDM 
 

We should test physically motivated models – 
  observations cannot determine a model. 
Try to devise null tests for the concordance model. 
 

For example, define the observable:  
 

 

      (Zunckel, Clarkson 2008; 
        Sahni, Shafieloo, Starobinbsky 2008) 

It satisfies: 
 
 
 

 
 

Any model that is not flat ΛCDM has nonzero Om’(z) 

 eg curved ΛCDM, w≠-1 models 
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(Shafieloo,  
Clarkson 2010) 



In principle this null test can rule out the  
concordance model (flat ΛCDM). 
 

In practice, the data for H(z) is still poor –  
   from cluster counts and galaxy ages. 
We can relate H(z) to luminosity distance via 
 
 
 
But then we need the derivative of DL(z) – and  

data is not good enough yet. 
 

Future BAO surveys should determine  

H(z) – from the radial BAO feature: 

 

         simulation 

                         
          (Gaztanaga, Cabre, Hui  2009) 
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Motivation: try to solve the coincidence problem  
   (DE should evolve from high value to low). 

 
 
 
 
 
 
 
 
 
 

 

 But this requires highly fine-tuned parameters in V. 
 Perhaps string theory will explain this?  
 

Dynamical DE: Λ → V(φ) 

quintessence (tracker) 

quintessence (slow-roll) 

vacuum energy  

0)('3   VH 

0



     

Observations that probe acceleration 
 
There are 2 kinds of observations. 
 

1.  Observations that probe the background evolution, 
i.e. the expansion history H(z): 

  SNIa luminosity distance 
  CMB „shift‟ parameter 
  Baryon Acoustic Oscillation (BAO) scale 
 and (less reliable): cluster counts, galaxy ages, GRBs 
 

2.  Observations that probe the growth of structure: 
  Growth rate of density perturbations 

  CMB: Integrated Sachs-Wolfe effect 
  Gravitational lensing 
  
      
 
 



Observations that probe the background  

Evolution is given by H(z) – constrained by: 

 Standard candles – SNIa luminosity distance 

 

 

 

 Standard rulers – acoustic scale at decoupling 

 

 

    Probed by CMB „shift parameter‟ 

    and by galaxies (Baryon  

    Acoustic Oscillations) 
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Cosmological distances 

 

Angular diameter distance: 

 

Luminosity distance: 

 

 

Distance duality: 

         Etherington 

Friedmann: 
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BAO – a fossil record in the galaxy distribution 

 

 

 

      

(White 2007) 



BAO – a powerful future probe of H(z) and DA(z) 

 

 

 
 

 

         Currently only a volume average is found: 
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Observations that probe  
the growth of structure. 1 

 Rate of growth  

 of structure 
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Observations that probe  
the growth of structure. 2 

   The ISW effect: 
   CMB photons carry the signature of acceleration    



PLANCK 2009 

photons from decoupling 

photons from stars 

ISW effect 
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Observations that probe  
the growth of structure. 3 

 

Einstein: bending of light by matter 



 
Light rays from a 
distant galaxy are bent 
by the matter between 
the galaxy and us. 

 
„Gravitational lensing‟ 
gives us a measure of 
the total matter –  
which is sensitive to 
DE.  
 

Deflection angle:    
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Friedmann background 
 

 For K=0 
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Metric and matter perturbations 
 

 Newtonian gauge (any metric gravity theory):    
             

              Φ = Newtonian potential 

              Ψ = curvature perturbation 

      V = velocity potential 

 

 

Φ, Ψ, V are gauge-invariant. δρ, δp are not.  

Gauge-invariant denisty perturbation: 
 

We neglect anisotropic stress since we neglect radiation 

(late universe). 
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Perturbed conservation equations  

 

                        

       

 Pressure perturbations 
 

 

                adiabatic sound speed 

 

                non-adiabatic pressure 

      

     effective, physical sound speed 

 

 

Adiabatic medium: 
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Examples: 

Matter and radiation (after decoupling) – adiabatic: 

 
 
 

Quintessence –  

non-adiabatic 

and self-consistent: 

 

 

 

„Fluid‟ DE, w =const – non-adiabatic, not self-consistent: 
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Perturbed Einstein equations  

 

                   GR Poisson 

        

        

 

           Πij = 0 

GR Poisson equation in Newtonian form: 

 

 

Since Ψ = Φ, we can derive: 

 

 

(This verifies that ceff = the physical sound speed.) 
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Perturbed Einstein equations – implications  
       

Growth rate: on sub-Hubble scales (k>>h) 
 

   
 

since DE does not cluster (exactly true for Λ).  

Also 
 

Thus 
 

DE only affects growth via the background. 

For no DE, growing mode  is  

 

DE suppresses growth:  
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Perturbed Einstein equations – implications. 2 
       

ISW:  

 

where 

  

With no DE: 

 

 

 

DE generates a nonzero ISW –  

because the matter potentials decay. 

 

   


dvdv
T

T
2

ISW

  0)31(2)1(3 22

eff

222  kchchhc ss

00
ISW





T

T



Perturbed Einstein equations – implications. 3 
       

Weak lensing:  

 

where 

  

DE generates a different WL signal to no-DE. 

 

Note: 

 Ψ is determined by growth rate (k>>h) 

 Ψ + Φ is determined by ISW (k<<h) and WL (k>>h) 

 In GR, the two potentials are the same, Ψ = Φ, 

    and all 3 observables are closely tied together. 
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Summary: GR DE models 
 

 Simplest model = ΛCDM (with K=0) 

 It is predictive and passes all observational tests 

 But there is no satisfactory explanation from 
fundamental physics 

 Dynamical DE does not solve the problems of Λ – and 

observations do not require it (up to now) 

 No dynamical DE model is better motivated than Λ 

 DE affects perturbations mainly via the background 
 

We can use new observations to: 
 Test for deviations from ΛCDM (good physics) 

 Test physically-motivated dynamical DE (good physics) 
 Test parametrizations of dynamical DE (can be useful) 
 

Combining background and structure growth  
observations gives the best contraints. 

 



Lecture 1 
 
Overview of the accelerating Universe. 
Dark Energy models in GR. 
Observations of background and structure growth. 
 
Lecture 2 
 
Modified gravity as an alternative to DE. 
f(R) and DGP – simplest models. 
Testing GR with cosmology. 
 
Lecture 3 
 
Inhomogeneous models of the accelerating Universe. 
Testing the Copernican Principle and homogeneity. 
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Models for the accelerating Universe 
 

Lecture 2:  
Modified gravity and testing GR 



Is DE actually a gravitational effect  
in disguise? 

  

 1.  If we keep GR as our gravity theory, then:  

      we must abandon the perturbed Friedmann model 

 We can abandon the Copernican Principle and 
consider inhomogeneous models like LTB 

 We can try to use backreaction from structure 
formation to explain acceleration as an apparent, 
not real, effect 

(see lecture 3) 

 2.  If we keep the perturbed Friedmann model, then:  

      we must abandon GR on large scales/ low energies  



In Einstein‟s General Relativity, in a Friedmann Universe, 
acceleration is caused by the anti-gravity of Dark Energy. 
 
Suppose there is NO Dark Energy – but instead, the Universe 
accelerates because gravity weakens on large scales. 
This would mean a modification of GR. 
 
 
 
 
   
 
Maybe „Dark Energy‟ is just a signal of the breakdown of GR? 
No good modified gravity has been found yet –  
but in any case, we need to test GR. 

  

Example from history:   

Mercury‟s perihelion 

– Newtonian gravity + „dark‟ planet? 
No – modified gravity, ie Einstein‟s GR 

   

  

Modified gravity 

GR on tomodificati 
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NB – The MG alternative must still explain why the   

  vacuum energy does not gravitate:  
 

Dark Energy dynamics 

 

 
 

Modified Gravity dynamics 
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In the Friedmann background –  

 same energy conservation: 

 modified Friedmann equation: 
  

Examples: 

   f(R) modified gravity (R = Ricci scalar) 

 

 

 

   DGP modified gravity (braneworld model) 

 

 
 

Note: MG theory must satisfy solar system and 

binary pulsar constraints – very close to GR. 
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We can find a GR model of DE to mimic the H(z)  

of a modified gravity theory: 

   

  

 

 

 

  

 

This can match SNIa data (but it is not a physical DE model). 

 How to distinguish MG and DE models that both fit the 
observed H(z) ? 

They predict different growth of structure. 
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Structure formation is suppressed by acceleration in different 
ways in GR and modified gravity: 
* in GR – because DE dominates over matter 
* in MG – because gravity weakens 
 

 

 

 

 

 

 

 

(G determined  

 by local physics) 

 

sign change could           
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increases   :MG

  :DE
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Distinguish DE 
from MG via 
growth of 
structure 

   DE and MG  with  

    the same H(z) 

 

    rates of growth of  

    structure f(z) differ 

 

 

 

 

    Also use ISW + WL 

DE + MG models 

LCDM 

MG model (modification to GR) 

DE model (GR) 

LCDM 
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d
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 Our 4D universe may be moving in 10D spacetime 

 Motivated by string theory 

    

 

 

 

 

 

 

 

 

unifies the 4 

interactions 

Braneworld universe 



 

 New massive graviton modes 

 New effects from higher-D fields and other branes 

Could these dominate at low energies? 

 

 

 

 

 

 

matter 

gravity 

+ dilaton, 

form fields… 

extra dimension  

Possibilities 

* „bulk‟ fields as effective  

   DE on the brane  

   (eg ekpyrotic/ cyclic) 

* no bulk fields - effective 4D 

  gravity on the brane modified 

  on large scales 

  (eg DGP) 

shadow 

brane 

 Modified gravity from braneworlds 

our brane 



 

 
 

   

    

 

   

 
                           

  Weak field static regime 

         

 
 

 

 
 

  

 
            

       

gravity 

leakage: 

gravity on 

the brane 

is weaker 
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DGP self-acceleration  
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early universe  – recover the GR H(z): 4D gravity dominates 
late universe    – acceleration without DE: 5D gravity dominates 
    * gravity “leaks” off the brane 
               * therefore gravity on the brane weakens 
 

 Passes the solar system/ binary pulsar tests:  
     since DGP         GR on small scales. 
 The background is very simple – like LCDM 

de Sitter 

like GR 
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Passes the SNIa test: 

(RM, Majerotto  2006) 



Tension between 
SNe, BAO and 
CMB shift. 
DGP struggles to  
fit the data. 
 
 
Unlike LCDM… 

SNe 

CMB shift 

baryon 

oscillations 

FLAT 

Further tests of the 
background 
expansion history: 

(RM, Majerotto  2006) 





A key problem is the effective 
equation of state 
 
    too large 
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Metric perturbations on the brane: 
 
 
DGP: 

 
 
 
 

where 
 

 
Effective anisotropic stress:                 Like Brans-Dicke with 
      

Structure formation in DGP 
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Very strong suppression of growth from 5D effects – from  
This could violate observational constraints ... 
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Growth factor data 
 
 
 
 
 
Need to look at the 
CMB ….. 

DGP 

(Guzzo et al 2008) 



 

 

 

 

 

 

Steeper 

 

implies  

stronger ISW  

than LCDM. 
 

 

 

 
 

QCDM = DE with the same expansion history as DGP. 

Together with geometric data: DGP is a poorer fit than LCDM (~5 sigma). 

     

Large-angle CMB (ISW) 
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DGP seriously challenged  

 DGP – simplest MG model from braneworlds 
           – probably the simplest MG model of all 
  – no free functions – same as LCDM 
 But it is seriously challenged by data: 
  – both background and structure-formation 
 
Key problem = the scalar degree of freedom: 
 DGP is like Brans-Dicke with                  
  
This leads to drastic suppression of growth 
   Furthermore:              indicates a ghost - 
    confirmed by detailed analysis 
   (The ghost makes the quantum vacuum unstable) 
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DGP lessons  

 Despite the challenge from data and the ghost –    
 DGP is a key example of how to combine 
 geometric and structure data to test GR 

  
 Can we avoid the crisis of data and the ghost? 
 Ghost-free self-accelerating models:  
    * we must go to higher dimensions 
    * up to now, no ghost-free cosmological model (?) 
 
Other modified gravity models? 
 



 

Simplest extension of the Einstein-Hilbert Lagrangian: 

 

 

 Avoids the Ostrogradski instability (ghost) 

 f‟‟(R) nonzero implies a new scalar DOF in gravity 

  Starobinsky‟s inflation model 

 

 is a high-energy (UV) modification of GR 

 Here we want a low-energy (IR) modification, eg 

Modified gravity from a  
nonlinear Lagrangian? 
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 f(R) is equivalent to a scalar-tensor theory with  

 Brans-Dicke parameter  

 This signals a major problem: how to escape  

 solar system/ binary pulsar constraints? 

 

 

eg.                  

 

At low energy,  1/R dominates –  

and this produces late-time self-acceleration. 

But the light scalar strongly violates solar system/  

binary pulsar constraints. 
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The simplest f(R) models fail – 

 because the light scalar means we cannot recover  

 the Newtonian limit on solar system scales. 

 Problem – the scalar mass must be ultra-light on 
cosmological scales to induce acceleration: 

 

 

 but it must be heavy near massive objects to overwhelm 
the Brans-Dicke behaviour. 

 Solution: the  „chameleon‟ mechanism: requires a  

    fine-tuned f(R). 

 Then solar system and basic cosmological tests can be 
passed. But the models are fine-tuned and very close to 
LCDM in the background. 
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Large-angle 
CMB in f(R) 

models 

today
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(Song, Peiris, Hu 2007) 



 Effective anisotropic stress 

 

 
 

 Weak lensing more complicated:  

 it involves the transition from  

 linear regime (large scales, Brans-Dicke like) to 

 nonlinear regime (small scales, Newtonian like). 
 

 Need new N-body simulations as a guide – cannot use 
the GR formulation based on GR N-body results. 

 

 Up to now, f(R) models can be constructed to meet the 
observations – but they are „tailor-made‟ for data, i.e. 
they are not really predictive. 
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The simplest models are not successful  

 f(R) and DGP – simplest in their class 
     – simplest modified gravity models 
 Both suffer because of their scalar degree of freedom: 
       f(R) needs fine-tuning („tailor-made‟) 
       DGP over-suppresses δ and has a ghost 
 
Either GR is the correct theory on large scales 
Or      Modified gravity is more complicated 
 
But f(R) and DGP are valuable toy models. 

 
Now we turn to MG perturbations in general. 



Modified gravity: Perturbed field equations  

 

           modified Poisson 

        

        

 

and 

 

 

Modified gravity in general produces: 

 * Change in strength of gravity Gmod 

 * Effective gravitational velocity Vmod 

 * Effective gravitational anisotropic stress Πmod 
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Testing modified gravity  
 

Observations (growth rate, ISW, WL) put constraints 
on Gmod , vmod , Πmod 

Currently – no evidence for modified gravity, but the 
data is improving. 

 

Which modified gravity theory should we test? 

 There is no convincing and natural candidate. 

 It is very hard to parametrize modifications to GR – 
the parametrization implies assumptions about the 
theory. 

 But – we can try to test GR itself, without choosing 
any alternative.  

    For example, if we find Ψ - Φ nonzero then GR is violated. 



A consistency probe  

Combining growth rate and WL, 

which are tightly linked in GR, define: 

            

If EG deviates from  

the GR value, then this 

signals a breakdown of 

GR. Illustration 
  

Current data is not 

yet good enough, and 

GR survives the tests 

(based on SDSS).               
 

 

                             (Zhang et al 2008) 
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Summary 

 Lesson: it is incredibly difficult to repeat the successes  
   of GR across the huge range of scales: 
    0.1mm  to  thousands of Gigaparsecs 
 Modifying GR in the infrared can lead to problems  
   on smaller scales and problems with scalar gravitons. 
 The simplest models f(R) and DGP do not succeed as 

alternatives to DE but are useful toy models. 
 Uncovering the problems with MG models gives deep 
   insights into: 

o properties of GR 
o how observations form a “web” of consistency 
o how to test the validity of GR itself on large scales –  
 even if we do not have a viable alternative yet 
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Lecture 3:  
The problem of inhomogeneity 



Large-scale homogeneity is part of the foundation  
 

  of the standard model of cosmology with GR 
  of all Modified Gravity models 
 

Testing GR with cosmology therefore assumes homogeneity. 
 
The homogeneous Friedmann model is successful – simple, 

predictive, compatible with all observations so far. 
But the dark sector puzzle alerts us to possible weaknesses 

and inconsistencies. 
 

We need to probe the foundations of the standard model, to 
test its robustness and advance our understanding of it.  

 

o Probe the theory of gravity  
o Probe models of matter – especially the averaging problem  
o Probe models of light propagation 
o Probe homogeneity 
 

 
 
 
 
 
 
 
 
 
 

 
     
  



  How to model matter and light rays:  
the averaging/ backreaction problem 

 

As nonlinear structure forms (voids, filaments, walls) –  
is there any backreaction, i.e. when we average over 
density at different redshifts, do we always get the same 
fixed Friedmann background? 
 
 
 
 
Strong claim in favour:  
Backreaction is nonlinear, enough to mimic DE. 
Strong claim against:  

Backreaction is zero/ negligible/ irrelevant. 

 
 



  The problem: 
We don‟t know the answer, because: 
1. We cannot perform the self-consistent GR calculation of 

the growth of structure – N-body simulations are not 
self-consistent. 

2. We do not know how to average in GR in a covariant 
way – and averaging does not commute with the field 
equations.   

 
Reasonable approach: 
Backreaction is not strong enough to replace  
DE – but it is also not negligible.  
 
Hypothesis based on the reasonable approach: 
Backreaction could operate at O(1%) level – and thus 
would affect „precision cosmology‟. 
 



  Conclusion based on the reasonable approach: 
We should take backreaction/ averaging seriously since 
it could overturn attempts at O(1%) „precision cosmology‟. 
 
This point is reinforced by the „twin‟ problem of light  
propagation in a universe with nonlinear structure: 
1. Light rays do not travel through the average density, 

since a significant part of matter is in bound structures. 
2. This affects distances – and we do not understand how 

to calculate this effect, nor how to average over it. 
 

Opposite strong claims: 
We can ignore nonlinearities and treat light as propagating  
in the background geometry   versus 
Nonlinear structure means that we badly misinterpret many 
observations and arrive at the wrong background model. 
 



  A reasonable approach: 
We should take light propagation seriously since 
it could overturn attempts at O(1%) „precision cosmology‟. 
 
 

Tentative overall conclusion: 
 
The backreaction/averaging of nonlinear structure, and the 
associated effects on light propagation are not strong  
enough to mimic DE – but they are likely to affect our 
interpretation of observations (maybe at the percent level),  
and we need to give them more serious attention. 
 
This is a very difficult problem. Therefore it is also useful 
to look at „toy‟ models of inhomogeneous solutions of  
Einstein‟s GR, to understand nonlinearity better.  
 



 
 

Testing homogeneity with observations 
 

A common misconception: „homogeneity is obvious from  
the  CMB and galaxy distribution‟. 
 

Not true – without extra assumptions that are not 

observationally based.  
 

What is the observational basis for homogeneity? 
 
We cannot directly observe  
homogeneity – only isotropy. 

We need the Copernican 
Principle to deduce  
homogeneity from isotropy. 
 
 
 
 
 
 
 

 
     
  

CP: we are not at a 
special position in the 
universe 



Without the CP – what can we say from  
isotropy of observations? 

 

 

1. Isotropic matter observations  
 

What is the minimal set of observables that we need to 
produce isotropic geometry? Einstein‟s equations show: 
________________________________________ 
Matter isotropy on lightcone gives isotropy of geometry 
 
 If one observer comoving with matter sees isotropic 

angular diameter distances, number counts, bulk 
velocities and lensing, in a dust Universe with Λ, then 
spacetime is isotropic about the observer, i.e. LTB 
(Lemaitre-Tolman-Bondi) 

________________________________________ 
 

(RM 1980; RM, Matravers 1994) 

 



2. Isotropy of the CMB 
  
• It seems „obvious‟ that this enforces isotropy of the 

spacetime. 
• It is plausible: we expect that the decoupling surface is 

isotropic, and that it evolves isotropically to the future. 
• But this has not been shown from the Einstein-Liouville 

equations up to now. 
 
 We cannot deduce isotropy  
 of the geometry, without  
 further assumptions to tie in 
 the matter. 
 
 CMB isotropy is not enough. 
 
 



With the Copernican Principle 
   
Without the CP, we cannot establish homogeneity: 

    because homogeneity cannot be directly observed  

 in the matter or CMB. 

We have to adopt the CP. 

  
1. What do isotropic matter observations tell us? 
___________________________________________ 
Matter isotropy on all lightcones gives homogeneity 

 

 If all observers comoving with matter see isotropic angular 

distances, number counts, bulk velocities and lensing, in a 

dust region with Λ, then that region is Friedmann 

___________________________________________ 
(This is an observational basis for the Cosmological Principle.) 

 



  
        A more powerful result 
 
We don‟t need isotropy of all 4 observables! 
 
Isotropy of distances alone, and only for small z,  
about all observers - implies homogeneity: 
 ________________________________________ 
 In a dust region of a Universe with Λ, if all fundamental 

observers measure isotropic distances to O(z3), then that 
region is Friedmann. 

    ________________________________________ 
 (Hasse, Perlick  1999; Clarkson, RM 2010) 

 
Note: we do not get isotropic spacetime if only one observer   

     sees isotropic distances to O(z3) 
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Series expansion (Kristian, Sachs 1966): 
 
 
 
 
 
 
where 
 
 

At O(z): 
 
 
 

Then isotropy at O(z) gives         
 
 

At O(z2), O(z3) we get enough further information to 

deduce Friedmann. 
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 2. What do isotropic CMB observations tell us? 
 
  
 
 
 
 
 
 
 It seems obvious that we should get Friedmann – and  

    is often stated. But these statements assume the result! 

 We have to show it using the general, fully nonlinear 

Einstein-Liouville equations. 

 Nonlinear perturbations are not an option – we cannot 

assume the Friedmann background that we are trying to 

prove. 

 



 History: 1968 mathematical theorem by Ehlers, Geren, 

    Sachs (EGS) 

 Update: Generalized to include baryons, CDM and DE 
 

 (Stoeger, RM, Ellis 1995; Clarkson, RM 2010) 

 

____________________________________________ 
 CMB isotropy + Copernican Principle gives Friedmann 
  

 In a region, if 
     * collisionless radiation is exactly isotropic, 
     * the radiation 4-velocity is geodesic and expanding, 
 
     * baryons and CDM are pressure-free, and DE is Λ   
        or quintessence or perfect fluid, 
 then the region is Friedmann, and 
 
____________________________________________ 
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Liouville equation in any spacetime 

 
  
             where 
 
    (here the indices a,b,… refer to a tetrad or coordinates). 
 

 Covariant harmonics (tracefree): 
 
 
 
 
 Intensity multipoles: 
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o Liouville equation is decomposed into covariant multipoles 
o Integrate these over photon energy  
o Gives the hierarchy of tracefree evolution equations for the 

intensity multipoles, in a general spacetime: 
 
 
 
 
 
 
 
     (Ellis, Treciokas, Matravers 1984; RM, Gebbie, Ellis 1999) 
 

where  
 
This is the basis for a covariant proof of EGS   
(Stoeger, RM, Ellis 1995; Clarkson, RM 2010) 
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1. l=2: photon quadrupole evolution 

 
 
 
    Thus we get zero shear: 
 

2. l=1:  photon momentum conservation 

 
 
 
    Take the covariant curl: 
 
 

3. l=0: photon energy conservation  

 
 

 etc. 
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  More powerful result: 
 
 
 
  
 
 
 
 
 

 Ellis, Treciokas, Matravers 1985 (ETM theorem – generalized in Clarkson, RM 2010) 

 

This is the best basis we have for (exact) homogeneity. 
 

Major open question: generalize the EGS-ETM results  
to derive near-homogeneity from near-isotropy. 
 

(partial result: Stoeger, RM, Ellis 1995) 
 



  
Testing the Copernican Principle  

and homogeneity 
 
The CP is the foundation of homogeneity: can we test it? 
 If we find no violation – this strengthens the evidence  
    for homogeneity (but cannot prove homogeneity). 
 If we find even one violation, this can disprove  
    homogeneity. 
 

1. Geometric consistency test 
 
 

Luminosity distance in FLRW 
 
 
 

 



  Now differentiate with respect to z: 
 
 
 
 
Thus we have a null test of homogeneity: 
 
 
                                          (Clarkson, Bassett, Lu 2009) 

If K is consistent with 0 – then this strengthens support for  

the CP (but it cannot prove homogeneity). 
 

This test can already be applied – using the same data that 
is needed for determining the DE equation of state w(z). 

The data is not yet good enough to determine derivatives of 
H(z) and DL(z) with enough accuracy. 

 
 

 



  
2. Probing inside the past lightcone 
 
2A. Remote sources: information from the causal past 
 

BAO – probe the sound horizon at last scattering 
  

Indirect probe inside our past lightcone: 
 



  
  

The proper radial and transverse BAO scales,  
in any spacetime: 
 
 
 
where 
 
 
(generalization of Friedmann H  to any 
 spacetime) 
 
A null test for homogeneity: 
 
 
 
     implies violation of homogeneity 
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   2B. Ionized gas in galaxy clusters scatters CMB  
       
Clusters act like giant mirrors that give us a glimpse 
of the last scattering surface inside our past lightcone. 
This probes remote multipoles of the CMB. 
 

 



  Sunyaev-Zeldovich effect on CMB temperature 
 

 Scattered CMB photons at distant clusters: 
  
 

 * thermal SZ distorts the 
 blackbody spectrum –  

 a large effect if there is  
 large anisotropy at the  
 cluster 
  

     (Goodman 1995; Caldwell, Stebbins 2008)  
  

 * kinetic SZ probes bulk  
 radial velocity    
 

     (Garcia-Bellido, Haugbolle 2008;  
      Zhang, Stebbins 2011) 
 

Non-perturbative SZ effect 
implies violation of CP. 
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Cluster polarization of CMB photons 
 

 Scattered CMB photons at distant clusters are polarized: 
 

 * by the CMB quadrupole –  

 a large effect if there is a 
 large quadrupole at the  
 cluster 
 
 
 
 
 
 
 
 
 
 
 
  

 * by the transverse velocity 
 of the cluster    
 

(Sunyaev, Zeldovich 1980;  
  Kamionkowski, Loeb 1997) 
 

Non-perturbative polarization implies violation of CP. 



Summary 
 

Homogeneity makes a good/ successful model. 
But what is the observational basis for homogeneity? 
  

 (I) Without assuming the Copernican Principle: 
      * What can we say from isotropy?  
   - isotropy of DA , N, velocities, lensing gives  
      isotropic (LTB) geometry 
   - CMB isotropy does not enforce isotropic geometry  

(II) With the Copernican Principle – strongest results:   

    * isotropic DA(z) up to O(z3) gives Friedmann 

   * isotropic CMB up to the octupole gives Friedmann 
 
(III) We can test the Copernican Principle :  

   * consistency tests on distances and BAO 
   * clusters as remote probes of CMB anisotropy 
 


