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Modified Gravity 

What causes an accelerated expansion of the universe  ??

• Cosmological constant ??
• Dark energy ??
• Modification of gravity ??

Modified gravity theory must satisfy ...

✓ Modification at large distance 

✓ Recovery of GR at small scale

✓ Accelerated expansion of the universe at present

✓ Consistency with cosmological observations
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KGB model (Deffayet et al. 2010, Kobayashi et al. 2010)

✓ Second order differential equation

✓ No ghost instability

✓ Self-accelerating solution

✓ GR at small scale (Vainshtein effect)

X = −gµν∇µφ∇νφ/2

�φ = gµν∇µ∇νφ

K(X), G(X) : arbitrary functions of the kinetic term

Kinetic Gravity Braiding Model



(n >∼ 100)

Example (Kimura and Yamamoto. 2011)
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behave like dark energy

Kinetic Gravity Braiding Model

rc : crossover scale (∼ H
−1
0 )

n : model parameter (n > 1/2)

Dvali-Turner’s Model 
(2003)

For large n 

Original galileon model (minimally coupled)

Cosmological constant model



n >∼ 3

Observational Constraints
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Kinetic Gravity Braiding Model

How about large scale structures ?



Perturbed Einstein equations
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Figure 3. The left panel is the contour of ∆χ2
SN

on the plane Ω0 and n for the kinetic braiding
model. The dashed curve and the solid curve are the 1 σ and 2 σ confidence contours, respectively.
The right panel is the same but of ∆χ2

CMB
.

where xi = (lA, R, z∗), di = (302.09, 1.725, 1091.3), and the inverse covariance matrix

C−1
ij =





2.305 29.698 − 1.333
29.698 6825.27 − 113.18
− 1.333 − 113.18 3.414



 . (3.5)

In this analysis, we adopted Ωr0 = 4.17 × 10−5h−2. The right panel of figure 3 shows 1 σ
and 2 σ confidence contours of ∆χ2

CMB. Our result is consistent with [43] for the case n = 1.
The higher n models better match the CMB distance observation.

4 Linear cosmological perturbations

In this section, we consider the linear evolution of cosmological perturbations. Hereafter,
we consider the era after the matter domination. The metric perturbation in the conformal
Newtonian gauge is given by

ds2 = −(1 + 2Ψ)dt2 + a2(t)(1 + 2Φ)δijdxidxj . (4.1)

We write the perturbation of the galileon field by φ(x, t) = φ(t)+δφ(x, t). Hereafter, φ̇ means
φ̇(t). In appendix A, we summarized the perturbation equations in the general case. In our
model, (2.14) and (2.15), the following equations are obtained.

The (0, 0) component of the Einstein equation yields

2M2
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= −KXδX − GX

(

3φ̇3Φ̇ − 12Hφ̇3Ψ + 9Hφ̇2 ˙δφ −
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)

− 3GXXHφ̇3δX − δρ, (4.2)
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Newtonian gauge



Kinetic Gravity Braiding Model

Perturbed scalar field equations
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δX = Const/a3 → 0

Large Scale Structures

c2s � 0
•Large n solution

˙δX + 3HδX = 0

δX = φ̇ ˙δφ− φ̇2Ψ
NO effects caused by 

the scalar field at linear 
order (=ΛCDM model)

•Small n solution (+sub-horizon) O(k2c2s/a
2) � O(H2)

δ̈ + 2H δ̇ � 4πGeffρδ Additional gravitational effect

The growth of density 
perturbations should be different 
from the ΛCDM model !!
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Constraints from the matter power spectrum
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Figure 14. Contour of ∆χ2
RD on the Ω0−σ8 plane. The upper left panel (a) is for the ΛCDM model.

The upper right panel (b) is the kinetic braiding model with n = 1, the lower left panel (c) is n = 2,
and the lower right panel (d) is n = 5, respectively. In each panel, the dashed curve and solid curve
are the 1σ and 2σ confidence contour-levels, respectively.

left panels assume the subsample of the the range of redshift 0.8 < z < 1.2, while the right
panels assume the subsample of the range redshift 1.2 < z < 1.6. The theoretical modeling
of the power spectrum is the same as that in the above subsection, which is evaluated at the
mean redshift of each subsample. In computing the theoretical power spectrum, we fixed the
initial amplitude of the fluctuation so that the matter power spectrum of the ΛCDM model
gives σ8 = 0.8. Other cosmological parameters are fixed as ns = 0.96 and Ωbh2 = 0.0225. The
cosmological redshift-space distortion is taken in the power spectrum of the kinetic braiding
model into account, assuming that the distance-redshift relation of the ΛCDM model is
adopted in data analysis. The error bars for the ΛCDM model is evaluated by [95]

∆P!(k)
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(2π)3

∆Vk

∫ 1

−1
dµ

[Ll(µ)]
2

V n̄2 [1 + n̄P (k, µ)]−2 , (5.6)

where Vk is the volume of a shell in the Fourier space, and V is the survey volume, V =
A
∫ zmax

zmin
dz(ds/dz)s2, where A is the survey area, and zmax and zmin are the maximum and

minimum redshifts of the survey, respectively.
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Figure 14. Contour of ∆χ2
RD on the Ω0−σ8 plane. The upper left panel (a) is for the ΛCDM model.

The upper right panel (b) is the kinetic braiding model with n = 1, the lower left panel (c) is n = 2,
and the lower right panel (d) is n = 5, respectively. In each panel, the dashed curve and solid curve
are the 1σ and 2σ confidence contour-levels, respectively.

left panels assume the subsample of the the range of redshift 0.8 < z < 1.2, while the right
panels assume the subsample of the range redshift 1.2 < z < 1.6. The theoretical modeling
of the power spectrum is the same as that in the above subsection, which is evaluated at the
mean redshift of each subsample. In computing the theoretical power spectrum, we fixed the
initial amplitude of the fluctuation so that the matter power spectrum of the ΛCDM model
gives σ8 = 0.8. Other cosmological parameters are fixed as ns = 0.96 and Ωbh2 = 0.0225. The
cosmological redshift-space distortion is taken in the power spectrum of the kinetic braiding
model into account, assuming that the distance-redshift relation of the ΛCDM model is
adopted in data analysis. The error bars for the ΛCDM model is evaluated by [95]
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where Vk is the volume of a shell in the Fourier space, and V is the survey volume, V =
A
∫ zmax

zmin
dz(ds/dz)s2, where A is the survey area, and zmax and zmin are the maximum and

minimum redshifts of the survey, respectively.
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(SDSS LRG sample DR7)

This constraints are still weak !!!

Small n is still allowed ....



Kinetic Gravity Braiding Model

What could be a powerful tool to 
constrain on the KGB model ?
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Galaxy-LSS Cross-correlation
Data from Giannantonio et al. ’08
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FIG. 1: The cross correlation function theoritically calculated
by using Eq. (11) and the data obtained in [26]. Eash curve
shows the cross correlation function of ΛCDM model, KGB
model with n = 1, n = 10, n = 100, n = 1000, and n = 5000,
from the top to bottom. The cosmological parameters are the
values of WMAP 7 year and bias is also fixed at the value of
ΛCDM model.

cross correlation function for the kinetic gravity braid-
ing model with large n approaches that for the ΛCDM
model. This is because the sound speed of the galileon
field becomes zero in the limit of n → ∞ [17]. Another
important feature in the Fig. 1 is the anti-correlation in
the kinetic gravity braiding model with small n. The
enhancement of the effective gravitational constant Geff

leads to the growth of the gravitational potential. Thre-
fore, the sign of the function dUk(z)/dz would change
differently from the ΛCDM model. On the other hand,
measurements of the cross correlation function in each
catalog indicate a positive cross-correlation function. Al-
though the values of the galaxy bias are for the ΛCDM
model, the background evolution for the kinetic gravity
braiding model with n > 100 is almost identical to the
ΛCDM model. In addition, the growth of density pertur-
bations is similar for n > 1000 and we expect that the
power spectrum is also identical to the ΛCDM model for
n > 1000. Therefore, the kinetic gravity braiding model
with large n approximately has the same value of the
galaxy bias for the ΛCDM model. For small n, which
corresponds to n < 100, the cross-correlation is negative,
therefore it does not matter when constraining the model
parameter because it is already ruled out.
The total chisquared is given by

χ2
total =

∑

i,j

(cobsi − ctheoi )C−1
ij (cobsj − ctheoj ), (14)

where cobsi is the cross-correlation function obtained from
observations, ctheoi is the cross-correlation function theo-
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FIG. 2: χ2 for the six galaxy catalogues as a function of the
model paramter. The dashed curve and solid curve are the
1σ and 2σ confidence levels, respectively.

retically predicted from Eq. (11), and C−1
ij is the inverse

of the covariance matrix obtained from [26]. Fig. 2 shows
the χ2 for the six galaxy catalogues as a function of the
model paramter. The best-fit value for the model param-
eter n is log n = 4.1+0.9

−0.4 and χ2
total = 49. As we expected

from Fig. 1, the kinetic gravity braiding model with small
n is obviously ruled out, and the kinetic gravity braiding
model with large n is favored by observations.

In addition to the KGB model, we present the obser-
vational contraints on the parametrized model, whose ef-
fective gravitational constant is given by Eq. (8). Fig. 3
shows Contour of ∆χ2 on the g1 − g2 plane. We
used the cosmological parameters from WMAP 7 year
[31], and the background expansion are assumed to be
the ΛCDM model. For each parameter, we assume
that the galaxy bias is determined by the amplitude of
the power spectrum of the matter distribution, b(i) =

D1(z
(i)
∗ )/D(ΛCDM)

1 (z(i)∗ ), where z(i)∗ is the mean redshift
of the i-th catalog. The result shows that the deviation
of effective gravitational constant from the Newton’s con-
stant has to be very small, as expected in [30]. The stan-
dard galileon model can be expressed as g1 ∼ 0.6 − 1.0
and g2 = 3 − 4 and obviously these paramter range is
ruled out.

CONCLUSION

In this paper, we focus on observational constrains
on the kinetic gravity braiding model from the cross-
correlation function betwween the galaxy distribution
and the Integrated Sachs-Wolfe effect. We found that the
correlation function of the kinetic gravity braiding model
with small n has a negative and these behavior is not fa-

n >∼ 104 (95% C.L.)

n=1
n=10

n=100
n=1000

ΛCDM
n=5000



Summary

✓KGB model has a self-accelerating solution and passes 
solar system constraints

✓ The background evolution can mimic the ΛCDM model. 
However, the growth of LSS in KGB model has different 
signatures from the ΛCDM model

✓ISW-LSS cross-correlation is a powerful tool to constrain 
on modified gravity

✓ Small n value in the KGB model (correspond to the 
galileon model) is disfavored by Galaxy-ISW cross-
correlation



Thank you !!


