- 1		÷				
-11			v			

Results

Light Propagation through exact non-linear inhomogeneities in ACDM cosmology

Nikolai Meures

Institute of Cosmology and Gravitation University of Portsmouth United Kingdom

28.07.2011 / RESCEU/DENET Summer School Work with Marco Bruni: arXiv:1103.0501 and arXiv:1107.4433

Outline

- 2
 - Our model
 - The metric and density deviations, arXiv:1103.0501
 - Light tracing equations, arXiv:1107.4433

Results 3

- Compensated δ
- Non-compensated δ

Summary

Results

Summary

Current status of cosmology

$$\begin{split} &\mathsf{WMAP7+BAO+}H_0\\ &\Omega_\Lambda = 0.725 \pm 0.016\\ &\Omega_m h^2 = 0.1126 \pm 0.0036\\ &w = -1.10 \pm 0.14\\ &\mathsf{Komatsu\ et\ al.\ (2011)} \end{split}$$

◆□ → ◆□ → ◆ □ → ◆ □ → ◆ □ → ◆ □ → ◆ □ → ◆ □ →

N /1	otu	1/21	tio	n
111	υu	va		

Results

Summary

The distance measure

IN FLRW:

 $\frac{d^2(d_A)}{d\lambda^2} = -\frac{1}{2}\bar{E}^2\bar{\rho}d_A,$

M	otiv	/ati	on
	our	au	011

Results

Summary

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

The distance measure

IN FLRW:

$$\frac{d^2(d_A)}{d\lambda^2} = -\frac{1}{2}\bar{E}^2\bar{\rho}d_A,$$

In general:

$$egin{array}{rcl} rac{d^2(d_{\mathcal{A}})}{d\lambda^2} &=& -\left[rac{1}{2}E^2ar
ho(1+\delta)+|\sigma|^2
ight]d_{\mathcal{A}}, \ &rac{d\sigma}{d\lambda} &+& 2rac{rac{d(d_{\mathcal{A}})}{d\lambda}}{d_{\mathcal{A}}}\sigma=\Psi_0, \end{array}$$

where d_A is the angular diameter distance *E* is photon energy σ is shear of light bundle

 Ψ_0 is Weyl scalar

Results

Outline

2 Our model

- The metric and density deviations, arXiv:1103.0501
- Light tracing equations, arXiv:1107.4433

3 Results

- Compensated δ
- Non-compensated δ

4 Summary

▲□▶▲□▶▲□▶▲□▶ □ つへで

Motivation

Our model

Results

Summary

Our metric

Consider here the flat ACDM sub-case

$$ds^2 = -dt^2 + S(t)^2 \left[dx^2 + dy^2 + Z(\mathbf{x}, t)^2 dr^2
ight]$$

where

$$Z(\mathbf{x},t) = A(\mathbf{x}) + F(r,t)$$

and x stands for all three Cartesian spatial coordinates

Motivation

Our model

Results

Summary

The metric deviation Z splits

We find

$$\boldsymbol{A} = \boldsymbol{1} + \boldsymbol{B}\beta_{+}(\boldsymbol{r})\left\{ [\boldsymbol{x} + \gamma(\boldsymbol{r})]^{2} + [\boldsymbol{y} + \omega(\boldsymbol{r})]^{2} \right\}$$

and

$$F(r,t) = \beta_+(r)f_+(t) + \beta_-(r)f_-(t)$$

Results

The metric deviation Z splits

We find

$$\boldsymbol{A} = \boldsymbol{1} + \boldsymbol{B}\beta_{+}(\boldsymbol{r})\left\{ [\boldsymbol{x} + \gamma(\boldsymbol{r})]^{2} + [\boldsymbol{y} + \omega(\boldsymbol{r})]^{2} \right\}$$

and

$$F(r,t) = \beta_+(r)f_+(t) + \beta_-(r)f_-(t)$$

Results

Summary

Density deviation example

Here $\gamma(r) = \omega(r) = \beta_{-}(r) = 0$ and $\beta_{+} \propto sin(kr)$ for $k = 2\pi/8 \text{Mpc}^{-1}$.

Results

Outline

Our model

- The metric and density deviations, arXiv:1103.0501
- Light tracing equations, arXiv:1107.4433

3 Results

- Compensated δ
- Non-compensated δ

4 Summary

▲ロ▶ ▲圖▶ ▲画▶ ▲画▶ 三回 ● ◎ ◎

Motivation	Our model	Results	Summary	
	0000000	00000		

The null geodesic equations

The very simplified case for light rays along *r*-axis

$$-\frac{E'}{E}=\frac{S'}{S}+\frac{F'}{1+F},$$

and

$$r'=rac{2}{3}rac{1}{H_0\sqrt{\Omega_\Lambda}SZ},$$

Motivation

Our model

Results

Summary

The Sachs optical equations

$$\begin{aligned} d''_{A} + d'_{A} \frac{E'}{E} &= \left(-\frac{2}{9} \frac{\rho}{H_{0}^{2} \Omega_{\Lambda}} - \frac{4}{3} \frac{|\tilde{\sigma}|^{2}}{E^{2}} \right) d_{A}, \\ \tilde{\sigma}' &+ 2 \frac{d'_{A}}{d_{A}} \tilde{\sigma} = 0 \end{aligned}$$

Here, the shear can be set to zero.

Results

◆□ > ◆□ > ◆三 > ◆三 > ・ 三 の < @

Outline

Motivation	Our model	Results	Summar
	000000	0000	

Inhomogeneities periodic on 8 Mpc scale

▲ロト▲舂▶▲酒▶▲酒▶ 酒 のQで

Motivation	Our model	Results	Summary
	000000	00000	

Inhomogeneities periodic on 100 Mpc scale

▲ロト▲聞▼▲目▼▲目▼ 目 のみの

Results

Outline

4 Summary

red: over-densities, blue: under-densities, black: FLRW background

▲ロ → ▲圖 → ▲ 画 → ▲ 画 → …

æ

Motivation	Our model	Results 00000	Summary
Summary			

- we have developed an exact inhomogeneous ACDM model
- can model non-linear structure growth and mode coupling

- compensated density has negligible effect on d_A
- non-compensated profiles have large effect
- identifying correct background is crucial

- 17						
			v			

Results

Thank you

Motivation	Our model	Results 00000	Summary
In our model The shocker slide			

$$-\frac{E_{\tau}}{E} = S^2 \left(\frac{3\Lambda}{4}\right) \left\{ r_{\tau}^2 (F+A) \left[(F+A) \frac{S_{\tau}}{S} + (f_+)_{\tau} \beta_+ \right] + \frac{S_{\tau}}{S} (x_{\tau}^2 + y_{\tau}^2) \right\},\tag{1}$$

$$\mathbf{x}_{\tau\tau} + \left(2\frac{\mathbf{S}_{\tau}}{\mathbf{S}} + \frac{\mathbf{E}_{\tau}}{\mathbf{E}}\right)\mathbf{x}_{\tau} - (\mathbf{F} + \mathbf{A})\beta_{+}(\mathbf{x} + \gamma)\mathbf{r}_{\tau}^{2} = \mathbf{0},$$
(2)

$$y_{\tau\tau} + \left(2\frac{S_{\tau}}{S} + \frac{E_{\tau}}{E}\right)y_{\tau} - (F + A)\beta_{+}(y + \omega)r_{\tau}^{2} = 0, \qquad (3)$$

$$r_{\tau\tau} + r_{\tau}^{2} \frac{(F+A)_{r}}{F+A} + 2r_{\tau} \left[\frac{S_{\tau}}{S} + \frac{1}{2} \frac{E_{\tau}}{E} + \beta_{+} \frac{(f_{+})_{\tau} + (x+\gamma)x_{\tau} + (y+\omega)y_{\tau}}{F+A} \right] = 0.$$
(4)

◆□ > ◆□ > ◆ □ > ◆ □ > ◆ □ > ● ● ●

Motivation	Our model	Results	Summary
	0000000	00000	

Non-FLRW contributions in the Sachs equations

0.0		0+1	00
	IV		

Results

Summary

angular diameter distance at high z

▲ロト▲聞ト▲国ト▲国ト 国 のQで