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INtroduction

x Bottom line: Baryon Acoustic Oscillations(BAOS) are
expected to provide a tight constraint on-the nature of dark
energy, using the BAOs as a standard ruler.

x According to the dark energy task force(Alorecht+2000),
BAOs are less affected by systematic effects than other
technigues, such as weak lensing, Supernova, etc.

= However, to exploit the full potential of upcoming high-quality
data, we have to treat the systematic effects on BAOs.

= [he main systematic effects: galaxy biasing, nonlinearity, and
redshift-space distortions
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Motivation

= [herefore, we have to make an accurate theoretical template
iIncluding a systematic effects; galaxy: biasing, nonlinearity and
redshift-space distortions

x \\Ne use theoretical model proposed by Matsubara(2008) (LRT)
which naturally incorporate above all-:of systematic effects into
their tormalism-of perturoation theory:-with-a resummation
technique via Lagrangian:picture <- 1o fitling parameter

= Other perturbation or resummation technigue with bias;
sMith+(2007,2008) ,Elia+2011 using TRG, Nishimichi & Taruya
(201 1)->probably Nishimichi-san’s talk
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Why Lagrangian resummation theory?

x Problem of Eulerian bias->no physical model of
Eulerian bias!

x Physical models of bias kKnown so far is provided In
Lagrangian space;

x c.g. halo bias model; peak bias model

x | RT Is suitable for handling Lagrangian bias
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L agrangian resummation theory

& Fundamental variables in Lagrangian picture is
displacement field - ¥ (q. t)

W(g,t) = z(q.1) —q

g, t) Eulerian final position

Pig,t) displacement field

q L agrangian initial position
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Redshift-space distortions

@ Redshift-space distortions are easily. incorporateo
into LRT

& Mapping Is exactly linear in:lLagrangian variables
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Redshift-space distortions

@ Redshift-space distortions are easily. incorporateo
into LRT

& Mapping Is exactly linear in:lLagrangian variables
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Redshift-space distortions

@ Redshift-space distortions are easily. incorporateo
into LRT

& Mapping Is exactly linear in:lLagrangian variables
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Redshift-space distortions

@ Redshift-space distortions are easily. incorporateo
into LRT

& Mapping Is exactly linear in:lLagrangian variables
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LRT with bias and redshift-space distortion

@ [he relation between Eulerian density field and
Lagrangian variables

3 L 3
Lt [ ol g Bl
Biased Euleriar Biased fieldin displacementincluding
density:field Lagrangian field redshift=space

distortions)
@ Perturbative expansion in Fourier space

kernel of the LLagrangian bias

ox (k) =) i/ (62:)13 éf{; (270)200 (Kyon — B)by (K1, . k) O (k) - - - 0L (k)

: < i dk 3
\Il(k):Z—/é:)S--- é:)g(zw)?)dg(kl...n—k)Ln(kl ..... k., )oL (k) - on(ky)

Kernel-ofdisplacement(including redshift-space distortion)




Simulation parameters

Name Szm Sz\ SZ}, h Ng gg Lbux *'\rp Zini I's A'rrun
L1000(low resolution) | 0.265 0.735 0.0448 0.71 0.963 0.80 |1000h *Mpc 1024* 36 50h 'kpc 30
L500(high resolution) 0.265 0.735 0.0448 0.71 0.963 0.80 | 500h ' Mpc 1024* 42 25h 'kpe 5

L1000(low resolution) L500(high resolution)

Ni  #fip|h°Mpe °] Mulh ' M) N,  #fin[h’Mpe ] My[h™* M)
4.00x10° 4.00x10°* 2.59%x10*? 1.08x10°% 8.68x10 %  4.58x10"
1.21x10°% 1.21x10°% 3.30x10** 1.86x10% 1.48x10 % 6.12x10"
2.38x10° 2.38x10° 7 4.75x10%* 2.42x10° 1.94x10 % 9.07x10"
2.82x10% 2.82x10°% 5.99x10'* 2.52x10% 2.01x10 ¢ 1.15x10%
2.93x10° 2.93x10°7 6.63x10"* 2.52x10° 2.01x10 % 1.27x10%
3.05x10° 3.05x10°°% 7.73x10'° 2.49%10° 1.99x10 % 1.47x10%

|

o

™ ™ ™ ™ ™ ™
|

O_0.0r—*tow
(] ]

& o compare the LR predictions, we mainly use
L1000 simulations whose number of particles are
1024173, box size on a side 1s 1Gpc/h and number
of realizations are 30.

-> suitable for examining the BAOs accurately.
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Our simulation results are supported by a recently proposed fitting
formulae obtained by using large and high-resolution N-body simulations,
such as Bhattacharya+(2011) and vice versa.
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Mass tunction
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Deviation from-unity shows that the FOF correction
may not be perfect in haloes with small particles
Our simulation results are supported by a recently proposed fitting
formulae obtained by using large and high-resolution N-body simulations,
such as Bhattacharya+(2011) and vice versa.
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Halo power spectra

PunLrr(k) = exp | ko] [(1 + (F'))*Pr(k) + Ego (k).
Pﬁh,LRT(/fa () = exp [—k203[1 + f(f + Q)MQ]] (L) fﬂz)ZPL(k) + Zﬂ%menm(k)]
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1-loop LRT agrees with simulation results on large scales in real and
redshift space. As redshift IS decreasing, the range of agreement is
narrower because of nonlinearity of dynamics.
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Halo power spectra
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Same as previous figure, but vertical axis is divided by square of scale
iIndependent bias, bA2, to see more guantitatively.
The agreement in redshift-space is worse than that in real-space due to
nonlinear redshift-space distortions.
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Scale dependence of bias

Same as previous figure, but Pnw is replaced with Pmm and PmmAs that
are corresponding matter power spectra, in order to get rid of nonlinearity
of dynamics.

Therefore, the deviation from unity shows the nonlinearity of bias and that
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of bias and redshift-space distortions in real and redshift space.
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Iwo-point correlation functions of haloes
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1-loop LR T well describes the acoustic peaks and nonlinear smearing
effects both in real and redshift space.
Halo bias does not significantly change the shape of baryon peak.
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Iwo-point correlation functions of matter
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1-loop LR T well describes the acoustic peaks and nonlinear smearing
effects both in real and redshift space.
Halo bias does not significantly change the shape of baryon peak.
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Summary

x Advantage of Lagrangian resummation theory(LR T)

- naturally incorporate halo bias and redshift-space
distortions!

-~ easler and faster to calculate the power spectrum than
other resummation methods even in the presence of halo
blas and redshift-space distortions.

x [he power spectrum and correlation function of haloes
from LRT well agree with-N-body simulation results on
scales of BAOs.

x Scale dependence of bias are well reproduced by LRT in
real and redshift space, especially at high redshift.
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