

 $\star \star \star \star$

1. Shock breakout 直後の明るさの変化(鈴木昭宏)

・
そ最も明るいphase

•⊱SN 2008DのX-ray flash

2. GRBと矮小銀河(中村航、辻本拓司、守屋尭)

・を矮小銀河の星の元素組成

· <>→ 銀河系ハローの星の元素組成と異なる

・ **F** GRBは暗い銀河に出る

SHOCK BREAKOUT

SN2008D/XR0080109

* Soderberg+ 2008 * X線(左)とUV(右)での画 像(NGC 2770)

* SN 2007uyの観測中に 偶然発見

*距離~27 Mpc

X-ray Light Curve

*継続時間~200秒 $*200 \times c^{-}6 \times 10^{12} \text{ cm}$ *衝撃波が星の表面を通過 した時の放射 *⁵⁶Coの崩壊熱による増光 が続く

UV-optical Light Curves

*数十日にわたる増光 * $E^2 \times 10^{51} \text{ erg}, M_{ej}^5 M_{\odot},$ $R^* 10^{11} \text{ cm}$

Optical Spectra

* He I, OI, FeII, Si II/H I features

* type Ib or Ic or IIb

* 非球対称爆発?

 $(\mathbf{\bullet})$

X-ray Spectrum

* High energy excess
* Bulk Compton?
* Suzuki & T.S. 2010

2010年10月7日木曜日

軸対称超新星爆発

*衝撃波が星表面を通過す る頃の光度曲線の視線方 向依存性を調べる

*衝撃波が表面に到達するまでの時間の角度依存性

* SN 1987A progenitor model * $M=14 M_{\odot}, R*=3 \times 10^{12} \text{ cm}$

視線方向と光度曲線

 $\langle \mathbf{O} \rangle$

2010年10月7日木曜日

SN2008D

*形から判断すると * 対称軸と垂直方向から観測 K-ray count rate (s⁻¹ * $\alpha = 0.5, \theta = \pi/2$ * Nebular phase spectrum * double peak OI line ***** Tanaka+ 2009 * 対称軸と垂直方向から観測

Nebular phase spectrum \diamond 15 Tanaka+ 2009 SN 2008D [O I] 6300 no correction Normalized flux + const our line of sight neavy elements 10 jet host [O I] 1/30 Hα C+O 5 He host [O I] 1/15 Ηα 20000 km s⁻¹ 9000 km s⁻¹ 5000 km s⁻¹ 0 -10 -5 5 0 10 Doppler velocity (10³ km s⁻¹)

1.GRB と矮小銀河

矮小銀河の星の元素組成

* □が矮小銀河の星 * 他の点は銀河系の星 * 矮小銀河の星は鉄が多い * SNe Iaの寄与? [Mg/Fe] 0 [Ca/Fe] [Ti/Fe] 0 $\Box \sqcup$ [Mg+(\cap [Fe/H]

Venn+ 2004

酸素とマグネシウムの比

観測とモデルの比較

* * * *

 $\star \star \star \star$

[O/Mg]~0 in SNe la

Iwamoto+ 1999

SNe Iaの元素合成?

* 観測 [Mn/Fe]<0

* [Mn/Fe]~0 in SNe Ia

Shetrone+ 2003

GRB host galaxies

* GRB host galaxies * 暗い銀河

* metal-poor

 $\langle \bullet \rangle$

dSph銀河でのGRB 元素合成

* 近傍dSph銀河の星の元素組成の起源はGRBか?

* GRBは非球対称性の強い超新星(SNe Ic)が起源

* 非球対称超新星での元素合成

* 軸対称爆発 $v_r \propto r(1+\alpha\cos 2\theta)/(1+\alpha)$

* Nagataki+ 1997

* $E=10^{52}$ erg, $M_0=40 M_{\odot}$, $M_{ej}=14 M_{\odot}$, $M_{rem}=2.4 M_{\odot}$

* No H-rich envelope, No He envelope

1

* A3
$$\alpha = 7/9$$

* v($\theta = 0$): v($\theta = 90^{\circ}$): 16:9
* A2 $\alpha = 3/5$

1

 $*v(\theta=0): v(\theta=90^{\circ}):8:5$

 $\langle \bullet \rangle$

原子核反応

*	1266核種の反応・	Z	A	Z	A
		n	1	Κ	29-70
		Η	1-3	Ca	30-73
*	反応率	He	$3,\!4,\!6$	Sc	32-76
		Li	6-9	Ti	34-80
	* Angulo+ 1999	Be	7-12	V	36-83
		В	8,10-14	Cr	38-86
		С	9-18	Mn	40-89
	* Rauscher + 2008	Ν	11-21	Fe	42 - 92
		0	13-22	Co	44-96
*	反応式はfully implicitに積分	F	14, 16-26	Ni	46-99
		Ne	15-41	Cu	48-102
		Na	17-44	Zn	51 - 105
	* テスト粒子(200x20)のg(t), T(t)を記	Mg	19-47	Ga	53-108
		Al	21-51	Ge	55-112
		Si	22-54	As	57-115
		Р	23-57	Se	59-118
	* post processとして計算	S	24-60	Br	61-121
		Cl	26-63	Kr	63-124
		Ar	27-67	1	
	* Ye=constant parameter(=0.499)		1		

Table. I: Nuclei included in the reaction network.

元素組成の方向依存性

Ca/Fe

* 組成は放出方向によって異なる A3 2 $*\theta^{0}$ 1.5 * 鉄族が多い 0.5 [X/Fe] 0 * Tpeakが高い -0.5 -1 ***** θ~90 -1.5 * 鉄族元素が少ない -2 0.2 0.4 0.6 0.8 1.2 1.4 1.6 0 1 Theta * Tpeakが低い

 $\langle \mathbf{O} \rangle$

元素組成の方向依存性

* O/Mg

 $\langle \bullet \rangle$

* 方向に依存しない

* 爆発前の元素合成

* 爆発した星の質量の指標

* Zn/Fe

* 6~0-0.6観測値に近い

* Mn/Fe

* 高すぎる(Ye=0.499)

* Ye=0.5⇒[Mn/Fe]~-1.2。低すぎる

次世代の星に

*星間物質との混合過程

*放出方向による違いがどう変化するか

*掃き集めるガスの量は?

* [Fe/H]?

*球対称爆発: MH~5×10⁴ Mo (E/10⁵¹ erg)^{0.97}

爆発のさせ方

* 中心に残る残骸(中性子星またはブラックホール)の質 量を仮定

*爆発機構の情報を引き出せるか