

Observing the Dark Matter Profile of Galaxy Clusters from kpc to Mpc Scales

Drew Newman

California Institute of Technology

Kochi, 31 August 2010

In collaboration with Richard Ellis, Tommaso Treu (UCSB), David Sand (CfA)

Outline

- Motivate detailed studies of galaxy cluster mass profiles
 - Relevance for dark energy/dark matter
- Introduce observational program to combine
 - strong and weak gravitational lensing,
 - X-ray,
 - and stellar kinematics

to measure precise luminous and DM profiles in a sample of relaxed clusters from $\sim 2 \text{ kpc} - \sim 2 \text{ Mpc}$.

- Illustration of method in Abell 383
- Comparison to simulation results
- Conclusions

Combining Cluster Mass Probes

- "Cluster counting" techniques to constrain w(t) require highprecision absolute calibration
 - Understanding systematics requires comparing independent techniques
 - Interpretation often depends on an assumed DM profile → needs to be tested
- Example: how close is the ICM to hydrostatic equilibrium?
- Projection effects very different for lensing (2D) versus X-ray or dynamics (3D)

Combining Cluster Mass Probes

- Dark matter (DM) halo profiles probe nature of DM and its interactions with baryons
- Comprehensive observational tests require large dynamic range
- and ability to separate baryonic and DM components
- Inner log slope βof the DM density (ρ_{DM} ~ r^{-β} for small <u>r</u>) is sensitive test
 - N-body simulations:β= 1-1.5 for DM-only halos

Observational Program

Goal: Measure mass profiles in relaxed clusters from kpc-Mpc scales for dark and luminous components separately via

- Strong lensing
- Strong lensing
 Stellar kinematics in cD galaxy
 Weak lensing
 Stellar kinematics in cD galaxy
 Stellar kinematics
 S
- ► X-ray

for a sample of 9 clusters

Rest of talk:

Abell 383

Newman+ in prep

Abell 383

- Relaxed cluster at z=0.19
- Regular optical and X-ray morphology
- Cool core
- Very low substructure fraction
- Nearly circular in projection

Abell 383: Strong lensing

3 multiply-imaged galaxies with spectroscopic z

21 images of 7 sources

Constrains projected mass on ~10-70 kpc scales

Abell 383: Weak lensing

- BVRiz Subaru
 Suprime-Cam
 imaging over 30'
- Shear measured in R band (0.56" seeing, KSB); surface density ~25 arcmin⁻²
- Calibrated against STEP2 simulations
- Photo-z's to remove cluster/foregrou nd

Kochi 31 August 2010

Abell 383: Stellar kinematics

New 6.3 hr Keck/LRIS spectrum of cD galaxy \rightarrow very extended velocity dispersion profile rising to R=26 kpc

Kochi 31 August 2010

Abell 383: Lensing + Stellar kinematics

Effects of projection on mass estimates

Halo and stars equally elongated along line of sight (prolate) \rightarrow Can reconcile lensing with X-ray, but not with stellar dynamics

Effects of projection on mass estimates

Halo elongated, but stars spherical (limiting case)

 \rightarrow Another way (besides a shallow DM slope) to remove mass from center, where it affects stellar dynamics, but keep within the "Einstein cylinder," as lensing requires

Abell 383: Lensing, X-ray, Kinematics 10¹⁵ Dark matter BCG stars Cylindrical enclosed mass [Ma] Range of simulated 10¹⁴ 1.4 പ **OM** inner slope DM halos 1.2 angential arc 2D 10¹³ 0.8 10¹² ంర 0.6 Shear 0.4 10¹¹ Radial arc 0.2 10¹⁰ 0.0 Stellar $\mathring{M}_{*}^{4}/\mathring{L}_{v}^{5}$ 2 7 [km/s] 8 500 ь 400 Projected X-ray 300 Assume ~7% low bias in X-ray 10¹³ 200 masses due to non-thermal ЗD 10¹² support (e.g., Nagai+ 2007, Chandra X-ray analysis 10¹¹ Meneghetti+ 2010) but include courtesy S.Allen (Allen+ uncertainty in this normalization 2008) 10¹⁰

1000

Spherical enclosed mass [M_a]

10⁹

10

100

Radius [kpc]

Good fit to all data

Kochi 31 August 2010

Effect of baryons

- Baryons likely modify the DM profile – not well understood
- Cosmological simulations of clusters, including gas physics and feedback, show DM contraction → steeper cusps with β>1
 - e.g., Gnedin+ 2004, Duffy+ 2010,
 Sommer-Larsen & Limousin 2009
- Adding baryons exacerbates the discrepancy with observations

A383 Observations

Conclusions and Future Work

- Combining lensing, X-ray, and stellar kinematics is a promising method to constrain
 - DM and stellar density profiles individually
 - Over 3 decades in radius a similar range to modern simulations
 - The three-dimensional shape of halo
- Application to Abell 383 implies a shallow dark matter cusp withβ≈ 0.4±0.2
- Unclear how to reconcile with steep DM cusps, even in presence of baryons.
- Future work
 - Extend to a larger sample of 9 clusters
 - Improving models
 - > Further modes of comparison to simulations/theory beyond β

Kochi 31 August 2010

Kochi 31 August 2010

Kochi 31 August 2010

Range of several mass probes illustrated for different DM profiles of same virial mass

Combining mass probes necessary since each

- covers a limited radial range
- has its own systematic uncertainties

Abell 383: X-ray

- Mass profile from Chandra data from Allen et al. 2008
 - Assumes spherical symmetry and hydrostatic equil.
- X-ray masses biased low in simulations – regardless of projection – due to non-thermal support

e.g., Nagai et al 2007, Lau et al 2009, Meneghetti et al 2010

 Will assume X-ray gives spherical masses with a ~7% low bias but allow scatter in normalization