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Critical density contrast: the overdensity that a
perturbation in the initial density field must have
for it to end up i a virialized structure
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Critical density contrast: the overdensity that a
perturbation in the initial density field must have
for it to end up i a virialized structure

Mass variance at the scale M
linearly extrapolated at redshift 2
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Critical density contrast: the overdensity that a
perturbation in the initial density field must have
for it to end up i a virialized structure

Lin, Growth factor

Mass variance ab the scale M
linearly extrapolated ot redshift z
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Critical density contrast: the overdensity that a
perturbation in the initial density field must have
for it to end up i a virialized structure

Lin, Growth factor

Mass variance ab Ehe scale M
linearly extrapolated ot redshift z

- Power spe&:&rum
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The mass function dependence on cosmology
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The mass function dependence on cosmology
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The mass function dependence on cosmology
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The mass function dependence on cosmology

e critical demsi&v cownkrast

¢ Power spectrum (s!mpe and
amplitude)

o Grrowth factor
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The mass function dependence on cosmology
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Sensitivity of the cluster mass function to
cosmological models

In(dn/dM)
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Sensitivity of the cluster mass function to
cosmological models
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Sensitivity of the cluster mass function to
cosmological models
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Sensitivity of the cluster mass function to
cosmological models

Cluskers probe a narrow ranqe of scales:
S

10°
10*
107

Power spactrum P(k)
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The scale R depends on both M and Om, thus the
mass function of nearby clusters is only able to
constrain a relation of oy and am.
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Sensitivity of the cluster mass function to
cosmological models
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Sensitivity of the cluster mass function to
cosmological models

Tuesday, October 5, 2010



Therefore...
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Therefore...

o find clusters
e wmeasure their wasses

® compare ko %heorv
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Therefore...

o find clusters

¢ measure their masses — Cosmology with galaxy clusters

® compare ko Ekearj
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How to find galaxy clusters?
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How to find galaxy clusters?

® ()PELGDJ. selecktion
® X*raj seleckion

¢ Llensing seleckion
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Optical selection

o the first statistically complete
sample of galaxy clusters (Abell
198%,19%9)

o clusters were identified as galaxy
overdensities and classified on
the basis of their “Richness”

e several algorithms have been
deve.topeci, which try to enhance Abell radius=1.8 MPC /I

the contrast of S"*L""‘fj Counht galaxies within Ra with mag
overdehsiﬁj ab a given FQS&ELOM

(e.9. Postman et al. 1996)

bebween ms and wiz+2

© an extension of these techniques
is the MaxBCG mebhod (Koester
ek al. 2007a,b: 13%23 clusters in
the SLOAN)
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Optical selection

o the first statistically complete
SQMFLQ Oﬂf Sgd_g\x:j cluskers (Ab@i’. nm(@.m) =ng(m)+An.(0.m) = ng(m)+AP(0—80.)d(m)
198%,19%9)

/ (na(@,m) — nm (0, m’)]

d€ddm
T (0. 110)

o clusters were identified as galaxy
overdensities and classified on
the basis of their “Richness”

dSddm

/ (na(0.m) —ng(m) — An.(0,m)]?
ng(m)

e several algorithms have been A= / (0 — 6., m)nq(0.m)dQddm — B
cievewpeci, which try to enhance
the contrast of galaxy n? e (6.m)
ove.rcies»\si,&j abt a given Fosi&om (0 — Oc,m) = (/ E(“Mm) n¢(m)
(e.9. Postman et al. 1996)

© an extension of these techniques
is the MaxBCG mebhod (Koester
ek al. 2007a,b: 13%23 clusters in
the SLOAN)
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Optical selection

o the first statistically complete
sample of galaxy clusters (Abell
198%,19%9)

o clusters were identified as galaxy

overdensities and classified on
the basis of their “Richness”

e several algorithms have been
cievetoped, which try to enhance
the contrast of galaxy
overdensity at a given position
(e.9. Postman et al. 1996)

© an extension of these techniques
is the MaxBCG mwethod (Koester
ek al. 2007a,b: 13%23 clusters in
the SLOAN)
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Optical selection

o the first statistically complete 2” - ':: “
sample of galaxy clusters (Abell ey
1956%,19%9) o

o [ *

¢ clusters were identified as galaxy l
overdensities and classified on :
the basis of their “Richness” O':

¢ several algorithms have been E
developed, which try to enhance 2;_ - 1_.
the contrast of galax byt g e
overdensity at a 3&\/&3\ position Io : T **#4*” WM
(e.9. Postman et al. 1996) L PR

© an extension of these techniques :
is the MaxBCG method (Koester 0 e
ek al. 2007a,b: 13%23 clusters in 4 15 16 17 18 19 20
the SLOAN) i
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X-ray selection

® Clusters are bright X-ray sources:
thermal bremsstrahlung from
OP&LtaLLj Ehin ptasma at the
temperature of several keV

o Clusters can then be searched as
exktended anaj sources on khe
sk‘j

o Advantages: 1) X-ray emission
comes from physically bound
systems ) the emissivity is
proportional to p? 3) easy
selection function and 4) X-ray
Lum, is well correlated wikth mass

Credit: X-ray: NASA/CXC/MIT/E.-H Peng et al; Optical: NASA/STScl
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X-ray selection

® Clusters are bright X-ray sources:
thermal bremsstrahlung from

OPEEﬂO\u.j &hﬂ’\ PLQSMO\ O& Hﬂ@. 10~" AL B R R S Eﬂ
&QMFQT’Q&MT’Q O‘f SQVQTC\L tze\f Tw . (*) = angular resolution /CZ;‘S\:S;] : 1
Y 107k in Half-Energy Width &/
£ " v
. ‘ o !
o Clusters can then be searched as o | R
‘ o 1077F v
extended X-ray sources on the — ~ |
© '
‘ X :
Sk“j o 10'"— : E
e :
lfl) Py \\Ql :
e Advantages: 1) X—~mv emission S 1075k P PR =
. | — /D Wt o @ N
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e b s = 107 A4S € N 3 -
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107" 10° 10’ 10? 10° 10 10

selection function and 4) X-ray
Llum. is well correlated wikth mass

Tuesday, October 5, 2010



Lensing selection

e As we have seen, clusters are the

most powe_rfut lenses in the Map(60) = / d*¢ 7 (; 00) Q)
universe _
2 '/TO’Q} 0 a.a 27 <
a M — d'l) 'l_) (2 (l))
o Clusters can then be searched ap nJo
through their lensing signal .00 _ f09 420~ (9; 85) Q(V)
® One can quantify the lensing " e \/ Joy A0 Q2 ()

stghal bv means of the “mass in
apertures”

® Big problem: projection effects

o Possible solution: optimal
filkering (see e.q. Maturi et al,
RO0OG)
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Lensing selection

e As we have seen, clusters are the D(O) = S (@) + NO) = At(0) + N(O)
mosk Fowarfui lenses in the
universe Aest(0) = f D@ )Y(O-¢)d*e

o Cluskers can then be searched

through their lensing signal Construct the filker such that it gives

unbiased estimabes and minimizes the

¢ Ohe can qua\t«&ft’ the lensing noise

stghal bv means of the “mass in b= (Auy — A) = A

[ W(0)7r(0)d*8 — 1|

apertures” .
® Big F’robi.em: Frojea&ion effects o= <(Aest —A)2> = b+ o) [ |‘i’(k)|2 Py(k)d*k
o Possible solution: optimal v
filkering (see e.q. Maturi et al. L
R006) W(k) = l I?(k)l“dzk (k)
(2m)* |J Pn(k) Pn(k)
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Lensing selection

e As we have seen, clusters are the
mosk Fwwarfui lenses in the

universe.

o Clusters can bthen be searched
through their lensing signal

e e can qu,aw\&fv the lensing
stghal bv means of the “mass in

a[per&ures"

e Big F’robi.em: Frojea&ion effects

o Possible solukion: optimal

filkering (see e.q. Maturi et al,

R00G)

In case of lensing by clusters:
¢ sighal = g

© shape of signal = NFW
® Noise = LSS + nbrinsic ellipt. .

(k) = g(k) = fd?'x g(x)exp(ix - k)

W2(w)

Pik) = - a*(w)

OH;Qp ('
~ f du
4("- - O

P(S(

k

- /a
frx(w)

|
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Lensing selection

e As we have seen, clusters are the
mosk Fow@.rfut lenses in the
universe

o Clusters can bthen be searched
through their lensing signal

P(k)

¢ One can quamﬁf:} the lensing
stghal bv meains of the “mass in
apertures”

® Big problem: projection effects

o Possible solution: optimal
filkering (see e.q. Maturi et al,
RO0OG)
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Lensing selection

e As we have seen, clusters are the
mosk Fow@.rfut lenses in the
universe

o Clusters can bthen be searched
through their lensing signal

¢ One can quamﬁf:} the lensing
stghal bv meains of the “mass in
apertures”

® Big problem: projection effects

o Possible solution: optimal
filkering (see e.q. Maturi et al,
RO0OG)
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S/ selection

o The SZ effect allows to observe O i LR ____NEEe
clusters by measuring the
distortion of the CMB spectrum
owing to the hot ICM (inverse
compton scattering of CMB
photons by ICM electrons)

150 GHz

150 GHz
Optimally Filtered Optimally Filtered Optimally Filtered Beam Smoothed

e Below 217CGhz, clusters are
revealed as EMEensiEj/&amPeraEure
decrements of the CMB radiation

95 GHz

225 GHz

¢ The decrement is
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S/ selection

o The SZ effect allows to observe
clusters by measuring the
distortion of the CMB spectrum
owing to the hot ICM (nverse
compton scattering of CMB
photons by ICM electrons)

¢ Below 217Ghz, clusters are
revealed as im&ensi&v/&amperﬁure
decrements of the CMB radiation

¢ The decrement is

1016 (—

5)(_ 1()1.’) 3

/M,

'\1hm

1018 |

5x10M

1014 —

Advantages:

ACDM

W 0.

5)

1. Independent of redshift! Lower mass Limik
R. /SZ has a tight correlation with the mass

Disadvantages:

Similarly to lensing, Fossibta contamination from

background/foreground structures and point

sSources
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Methods to measure the mass of clusters
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Methods to measure the mass of clusters

e gravitational lensing
® pro\:j

® ‘Dvnamiaat mass estkimakes
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Methods to measure the mass of clusters

e gravitational lensing
® X*rav
® ‘Dvnamiaat mass estinates

e WA 5SS Froxi,es
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X-ray mass estimates

The condition for hydrostatic equilibrium
determines the balance between the VPus = —pPgas V@
pressure force and the gravitational force

Under the assumption of spherical dP d¢ GM (<)

. —— = —Pgas 7 — —Pgas
s:;mme&r;; this becomes dr I J r2

Further using the equation of state of
ideal gas to relate pressure to gas density M (<7)=
and temperature, we obtain

_ikBT dIn pgas N dinT
G pm,, dinr dlnr
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X-ray mass estimates

The condition for hydrostatic equilibrium
determines the balance between the VPus = —pPgas V@
pressure force and the gravitational force

Under the assumption of spherical P d¢p  GM(<r)
ar  Peasgy T TPeesT 0

symmetbry this becomes

,, ___ — —

dlnpga8+dlnT .'j
dlnr dlnr |

Further using the equation of stake of |
ideal gas to relate pressure to gas density ’“M (<7)=
and temperature, we obtain

_L k‘BT
G pm,,
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Dynamical masses

Obther mebthods ko measure bthe cluskter wasses are based on the
assump&imm Ehabk Ehe clusker is sterifzat and A dvv\amitai equ&ubrmw\.
Gralaxies are bound by gravity, ie. they trace the gravitational
potential of the cluster.

GM 0°R

Applying the virial equilibrium: — = o® = M = eE

If a large number of galaxy spectra M(< 7) (v2)r [dIn P, c111-1<z;?) +28(r)
s available to measure the velocity G [dlns dins
dispersion profile, we can apply the

Jeans equation for steady-state f o (02) + (v2)

sF:»herE,e*:at sstems. | 2(v7)

Problems: requires the assumption of a relation between galaxy number
density profile and mass density profile and we usually dont know Br).
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Self-similar model

The simplest model to explain the physics of the ICM is based on the
assumption that gravity only determines the thermodynamical
properties of the hot diffuse gas.

Gravity has no preferred scale, thus, under this approximation galaxy
clusters should be self-similar (Kaiser 19%6), and clusters of different
sizes should be scaled versions of each other.
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Self-similar scaling relations

At redshift z, we define the mass
Ma, o pe(2)Acr, pe(2) = peoEX(z)  E(2) = [(1+2)°Qp + Qa]1?

Thus, the cluster size scales as 75 MXSE_Q/S(z)

Assuming hudrostakic _

ey .S J .. . M, x T3/?F 1(2’) M=T relakion
equilibrium, this implies:
The X"“‘!‘O\v Lummos&j LS

) 2
L :/ ( gas) A(T)dV Ly o MAcchl/Q X T2E(z) L-T relakion
v \HITp

AT o T2

(T) Lx oc M*3E"/3(2) L-M relakion

ASSMMEMS Pgas (T) X Pm (T)
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Self-similar scaling relations

As for the SZ signal:

Yoz x Di/ydﬁ X /Tnedgr X MyasT < fgasMa,T

And we obkain:

Ysz fgasT5/2E_1(Z) Y-T relation
Yoz o foas M3/ E?/3(2) Y-M relation
Yo, o fg—ai/3Mg56{S3E2/3 (2) Y-Mgas relation

1f clusters were self-similar, we might use several observables (Lx, Tx,
Mqas,Vsz) to infer the mass using these scaling relations, but..

i
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Phenomenological scaling relations

wseveral evidences AGAINST self-similarity!

. Ex.: the L-T relation is found to be
10 ] : steeper than predicted from the
1 self similar wodel.

E~'(2)Lx o< T"

with a=2.6-3 (self-similar slope is

2)

Simii.ari.j, the observed L-M relaktion
is steeper than expected from self-
similarity (~1.%5-19 vs 1.33)

h(z)™" Iy [0.15—1] Ry (10* erg s™)

10

Pratt et al. 2009: local L-T relation from the REXCESS sample
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Phenomenological scaling relations

wseveral evidences AGAINST self-similarity!

Ex.: the L-T relation is found to be
steeper than predicted from the
self similar wodel.

w 107 EY(2)Lx o T®
:8 with 0=2.8-3 (self-similar slope is
o

y 2)
j 100_
si Similarly, the observed L-M relation
= is steeper than expea&ed from self-

REXCESS | similarity (V1.%5-19 vs 1.33)
107 F 1 R

1 O 14 1 O 15
Msoo (e Mo)

Pratt et al. 2009: local L-T relation from the REXCESS sample
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What is breaking the self-similarity?

Short et al. 2010

100.0F T T 1 100.LOF ™1
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Departure from self-similarity points toward the presence of
some mechanism that significantly affects the ICM
&hermodjnam&ts (cooling, heating, feedback Processes). See
review by Borgani et al. 200%,

Tuesday, October 5, 2010



What is breaking the self-similarity?

1\

-~ ~484
logye (C / 10 h™? erg s

Short et al. 2010
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Departure from self-similarity points toward the presence of
some mechanism that significantly affects the ICM
&hermodjnam&cs (cooling, heating, feedback Processes). See
review by Borgani et al. 200%,
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Can we use the scaling relations?

well defined relakions exist that can be
used for obtaining mass estimates from easily accessible

qu&mﬁ&es!

Some of these relations are supposed to have a smaller
scatter, and thus to be preferable. For example the relations:

RARM|
M

¢

« E(z)-?/5 Y,3/%

)

?.
- »

solid: relaxed
open: unrelaxed
circles: z=0.0
squares: z=0.6

MAC X YSZ — Mgas X T 10%° | 8% scatter
Ma, o Yx = Myqs x Tx
N L .
Pt -
Ma, T ’
0
i A l
1012 1013
}'\ ‘”g..’JOOTT\’

1014

"(:.15

Kravstov et al. 2006

M, keV)
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Can we use the scaling relations?

The neqgative news: the scaling relations need ko be

calibrated!

Thus, it is fundamental to use robust methods to accurately
measure the masses of control samples of galaxy clusters
and ko use these measurements for the calibrations.

1.2

1

I'YYIYYY Y/YY]YY1~
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A=1

—

i TIIII IIII

_I] ll]ll IIII] L

a=2.5 1
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Borgani et al. 2001
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Which mass to use”?

Method\Scale Core Ros00 Rs00 R200

X X
X X

Strong

lensing X

Weak

lensing X X X

WL+SL X X X X

No equilibrium required but measure 2D masses
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s the assumption of equilibrium valid?

Let’s try checle it applying X-ray techniques to the analysis of
sinmulated clusters..
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(Gardini ek
al. Roo4,
Rasia et al.
2007)

X“r&v
sinmulator

Reads iv\pu&

hvdrc:v sim.

and produces
Chandra and
XMM images
of clusters

100 200 400
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X-ray (total) masses

a la Vikhlinin et al. (20006) a la Ettori et al. (2004)
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The X-ray total mass is under-estimated by 10-20%: this is in
agreement with several other numerical studies, where it has been
shown that gas bulle motions provide non-thermal pressure support (e.q.
Rasia eb al, 2004, 2007; Nagai et al. 2007; Piffaretti & Valdarnini 200%;

Ameglio et al. 2009)
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X-ray (total) masses

a la Vikhlinin et al. (20006)

a la Ettori et al. (2004)
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Measuring deviations from hydrostatic equilibrium

o If lensing provid&s an un-
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—xample: Vikhlinin et al. 2009

Vikhlinin et al. (2009) have recently used Chandra
observations of two samples of clusters to apply the
techniques discussed so far:
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—xample: Vikhlinin et al. 2009

Vikhlinin et al. (R009) have recently used Chandra
observations of two samples of clusters to apply the

techniques discussed so far:
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—xample: Vikhlinin et al. 2009

Vikhlinin ek al. (2009) have recently used Chandra
observations of two samples of clusters to apply the
techniques discussed so far:
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Recent results from LOCUSS
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Recent results from LOCUSS
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Recent results from LOCUSS
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