Lecture 2: Cluster mass reconstructions using lensing

Massimo Meneghetti
Osservatorio Astronomico di Bologna
Dipartimento di Astronomia - Università di Bologna

Galaxy clusters

- concentrations of 100-1000 galaxies
- vel. dispersions ~1000 km/s
- Size: R~1 Mpc (tcross ~ R/ $\sigma \sim 1$ Gyr $<\mathrm{t}_{\mathrm{H}} \sim 10 \mathrm{~h}^{-1}$ Gyr)
- Mass $M \simeq \frac{R \sigma_{v}^{2}}{G} \simeq\left(\frac{R}{1}\right)\left(\frac{\sigma_{v}}{10^{3}}\right)^{2} 10^{15} h^{-1} M_{\odot}$
- Components: DM (~85\%), BARYONS (~15\%)
- Hot ICM: $\mathrm{T}_{x \sim 3-10 \mathrm{keV}, \mathrm{n}_{\text {gas }} \sim 10^{-3}}$ atoms/cm ${ }^{3}$, Z~0.3 solar: fully ionized gas emitting via thermal
 Bremsstrahlung + line emission

$$
\mathrm{L}_{\mathrm{x}} \sim \mathrm{n}_{\text {gas }}{ }^{2}(\mathrm{~T}) \wedge(\mathrm{T}) \sim 10^{43}-10^{45} \mathrm{erg} / \mathrm{s}
$$

Good reasons to study galaxy clusters

- powerful cosmological tools
- ideal laboratories for testing the predictions of CDM on small scales

Good reasons to study galaxy clusters

- powerful cosmological tools
- ideal laboratories for testing the predictions of CDM on small scales

$$
\rho(r)=\frac{\rho_{s}}{r / r_{s}\left(1+r / r_{s}\right)^{2}}
$$

Good reasons to study galaxy clusters

- powerful cosmological tools
- ideal laboratories for testing the predictions of CDM on small scales

$$
\begin{gathered}
\rho(r)=\frac{\rho_{s}}{r / r_{s}\left(1+r / r_{s}\right)^{2}} \\
c=\frac{r_{s}}{r_{200}}
\end{gathered}
$$

Studying galaxy clusters with lensing

- multiple images
- positions
- numbers
- magnifications
- distortions
- relative magnitudes

SL Parametric mass models

Approach:
I. combine several mass components
2. assume that galaxies trace the matter
3. model each component using a) a density profile; b) an ellipticity; c) an orientation
4. cluster galaxies often described through scaling relations
5. find parameters such that a) the model yield predicted multiple images and arcs; b) it reproduces the correct \# of sources; c) it gives reasonably source sizes.

$$
\begin{gathered}
\sigma_{0}=\sigma_{0}^{\star}\left(\frac{L}{L^{\star}}\right)^{1 / 4} \\
r_{\text {core }}=r_{c o r e}^{\star}\left(L / L^{\star}\right)^{1 / 2}, \\
r_{\text {cut }}=r_{\text {cut }}^{\star}\left(L / L^{\star}\right)^{\alpha},
\end{gathered}
$$

SL Parametric mass models

Approach:
I. combine several mass components
2. assume that galaxies trace the matter
3. model each component using a) a density profile; b) an ellipticity; c) an orientation
4. cluster galaxies often described through scaling relations
5. find parameters such that a) the model yield predicted multiple images and arcs; b) it reproduces the correct \# of sources; c) it gives reasonably source sizes.

$$
\begin{gathered}
\sigma_{0}=\sigma_{0}^{\star}\left(\frac{L}{L^{\star}}\right)^{1 / 4} \\
r_{\text {core }}=r_{c o r e}^{\star}\left(L / L^{\star}\right)^{1 / 2}, \\
r_{\text {cut }}=r_{\text {cut }}^{\star}\left(L / L^{\star}\right)^{\alpha},
\end{gathered}
$$

SL Parametric mass models

Approach:
I. combine several mass components
2. assume that galaxies trace the matter
3. model each component using a) a density profile; b) an ellipticity; c) an orientation
4. cluster galaxies often described through scaling relations
5. find parameters such that a) the model yield predicted multiple images and arcs; b) it reproduces the correct \# of sources; c) it gives reasonably source sizes.

$$
\begin{gathered}
\sigma_{0}=\sigma_{0}^{\star}\left(\frac{L}{L^{\star}}\right)^{1 / 4} \\
r_{\text {core }}=r_{c o r e}^{\star}\left(L / L^{\star}\right)^{1 / 2}, \\
r_{\text {cut }}=r_{\text {cut }}^{\star}\left(L / L^{\star}\right)^{\alpha},
\end{gathered}
$$

Abell 61I

Donnarumma et al. 2010
see also: Richard et al. 2009, Newman et al. 2009

X^{2} minimization

$$
\begin{aligned}
& \vec{\beta}_{i}=\vec{\theta}_{i}-\vec{\alpha}\left(\vec{\theta}_{i}, \mathbf{p}\right) \\
& \chi_{s r c}^{2}=\sum_{i}\left(\frac{\vec{\beta}-\vec{\beta}_{i}}{\sigma_{i}}\right)^{2} \\
& \chi_{i m g}^{2}=\sum_{i}\left(\frac{\vec{\theta}_{i}(\vec{\beta})-\vec{\theta}_{i}}{\sigma_{i}}\right)^{2}
\end{aligned}
$$

X^{2} minimization

$$
\begin{gathered}
\vec{\beta}_{i}=\vec{\theta}_{i}-\vec{\alpha}\left(\vec{\theta}_{i}, \mathbf{p}\right) \\
\chi_{s r c}^{2}=\sum_{i}\left(\frac{\vec{\beta}-\vec{\beta}_{i}}{\sigma_{i}}\right)^{2} \\
\chi_{i m g}^{2}=\sum_{i}\left(\frac{\vec{\theta}_{i}(\vec{\beta})-\vec{\theta}_{i}}{\sigma_{i}}\right)^{2}
\end{gathered}
$$

X^{2} minimization

$$
\begin{gathered}
\vec{\beta}_{i}=\vec{\theta}_{i}-\vec{\alpha}\left(\vec{\theta}_{i}, \mathbf{p}\right) \\
\chi_{s r c}^{2}=\sum_{i}\left(\frac{\vec{\beta}-\vec{\beta}_{i}}{\sigma_{i}}\right)^{2} \\
\chi_{i m g}^{2}=\sum_{i}\left(\frac{\vec{\theta}_{i}(\vec{\beta})-\vec{\theta}_{i}}{\sigma_{i}}\right)^{2}
\end{gathered}
$$

Strong Lensing

- Multiple images detected in the HST images are used construct a parametric lens model using the Lenstool public software (Kneib et al., 1993; Jullo et al. 2007)
- The model consists of
- Main halo, modeled using NFW
- Additional mass components associated to star-groups, modeled using PIEMDs

- Additional mass components associated to star-groups, modeled using PIEMDs

Strong Lensing

- Multiple images detected in the HST images are used construct a parametric lens model using the Lenstool public software (Kneib et al., 1993; Jullo et al. 2007)
- The model consists of
- Main halo, modeled using NFW
- Additional mass components associated to star-groups, modeled using PIEMDs

- iviali i iaiv, ilivueieu usiriy ivivv
- Additional mass components associated to star-groups, modeled using PIEMDs

Strong Lensing

- Multiple images detected in the HST images are used construct a parametric lens model using the Lenstool public software (Kneib et al., 1993; Jullo et al. 2007)
- The model consists of
- Main halo, modeled using NFW
- Additional mass components associated to star-groups, modeled using PIEMDs

- iviali i ialv, ilivueieu usiriy ivivv
- Additional mass components associated to star-groups, modeled using PIEMDs

Strong Lensing

- Multiple images detected in the HST images are used construct a parametric lens model using the Lenstool public software (Kneib et al., 1993; Jullo et al. 2007)
- The model consists of
- Main halo, modeled using NFW
- Additional mass components associated to star-groups, modeled using PIEMDs

Distortion of faint galaxies

- Let consider a particular lensing regime where we have small deflections, small distortions, no multiple images (Weak Lensing)
- As we have seen earlier in the course, in the limit of small deflections, the lens equation can be linearized and the lens mapping is described by the Jacobian matrix

$$
\begin{gathered}
\mathcal{A}(\boldsymbol{\theta})=(1-\kappa)\left(\begin{array}{cc}
1-g_{1} & -g_{2} \\
-g_{2} & 1+g_{1}
\end{array}\right) \\
g(\boldsymbol{\theta})=\frac{\gamma(\boldsymbol{\theta})}{[1-\kappa(\boldsymbol{\theta})]}
\end{gathered}
$$

- The conservation of surface brightness in combination with the lens equation, allows

$$
I(\boldsymbol{\theta})=I^{(\mathrm{s})}\left[\boldsymbol{\beta}_{0}+\mathcal{A}\left(\boldsymbol{\theta}_{0}\right) \cdot\left(\boldsymbol{\theta}-\boldsymbol{\theta}_{0}\right)\right]
$$ to derive the distortion of the isophotes

Distortion of faint galaxies

- A circular source is mapped into an ellipse by first-order lensing
- the major and the minor axes of the ellipse are given by combinations of shear and convergence
- the ellipticity can also be written in terms of convergence and shear
- choosing the right definition, one finds that the ellipticity is actually the reduced shear!

$$
a=\frac{r}{1-\kappa-\gamma} \quad, \quad b=\frac{r}{1-\kappa+\gamma}
$$

- thus: I measure the ellipticity, I measure the reduced shear

$$
\epsilon=\frac{a-b}{a+b}=\frac{2 \gamma}{2(1-\kappa)}=\frac{\gamma}{1-\kappa}
$$

- in the very weak lensing regime, when the convergence is small, the ellipticity is an $|g|=\frac{1-b / a}{1+b / a} \quad \Leftrightarrow \quad \frac{b}{a}=\frac{1-|g|}{1+|g|}$ estimate of the shear

Distortion of faint galaxies

- A circular source is mapped into an ellipse by first-order lensing
- the major and the minor axes of the ellipse are given by combinations of shear and convergence
- the ellipticity can also be written in terms of convergence and shear
- choosing the right definition, one finds that the ellipticity is actually the reduced shear!

$$
a=\frac{r}{1-\kappa-\gamma} \quad, \quad b=\frac{r}{1-\kappa+\gamma}
$$

- thus: I measure the ellipticity, I measure the reduced shear

$$
\begin{aligned}
& \epsilon=\frac{a-b}{a+b}=\frac{2 \gamma}{2(1-\kappa)}=\frac{\gamma}{1-\kappa} \approx \gamma \\
& |g|=\frac{1-b / a}{1+b / a} \Leftrightarrow \frac{b}{a}=\frac{1-|g|}{1+|g|}
\end{aligned}
$$

Measurements of shapes and shear

- Unfortunately sources are not circular: they have their intrinsic ellipticity

$$
\begin{array}{r}
\text { image centroid: } \quad \overline{\boldsymbol{\theta}} \equiv \frac{\int \mathrm{d}^{2} \theta I(\boldsymbol{\theta}) q_{I}[I(\boldsymbol{\theta})] \theta}{\int \mathrm{d}^{2} \theta I(\boldsymbol{\theta}) q_{I}[I(\boldsymbol{\theta})]} \\
q_{I}(I)=\mathrm{H}\left(I-I_{\mathrm{th}}\right)
\end{array}
$$

brightness profile

$$
Q_{i j}=\frac{\int \mathrm{d}^{2} \theta I(\theta) q_{I}[I(\theta)]\left(\theta_{i}-\bar{\theta}_{i}\right)\left(\theta_{j}-\bar{\theta}_{j}\right)}{\int \mathrm{d}^{2} \theta I(\boldsymbol{\theta}) q_{I}[I(\theta)]}, \quad i, j \in\{1,2\}
$$

$$
\epsilon \equiv \frac{Q_{11}-Q_{22}+2 \mathrm{i} Q_{12}}{Q_{11}+Q_{22}+2\left(Q_{11} Q_{22}-Q_{12}^{2}\right)^{1 / 2}}
$$ distribution

- It is very common to work with the complex notation

$$
\begin{aligned}
& \epsilon=|\epsilon| \exp (2 i \varphi)=\epsilon_{1}+i \epsilon_{2} \\
& \gamma=|\gamma| \exp (2 i \varphi)=\gamma_{1}+i \gamma_{2} \\
& g=|g| \exp (2 i \varphi)=g_{1}+i g_{2}
\end{aligned}
$$

From source to image ellipticities

As done for the lensed source, we can define the source intrinsic ellipticity in terms of the second moments of the unlensed brightness distribution

$$
\begin{aligned}
& \text { Using the fact that } \\
& \begin{array}{l}
\mathrm{d}^{2} \beta=\operatorname{det} \mathcal{A} \mathrm{d}^{2} \theta, \\
\beta-\bar{\beta}=\mathcal{A}(\theta-\overline{\boldsymbol{\theta}})
\end{array}
\end{aligned}
$$

The inverse transformations are found by changing the source and the image ellipticities and g with $-g$

Expectation value for the source ellipticities

Remember that ellipticities are complex numbers characterized by a phase.
Suppose that sources have intrinsically random phases. In this case, averaging over a number of sources, the expectation value of the ellipticity is...

$$
E\left(\epsilon_{s}\right)=0
$$

Averaging $\quad \epsilon^{(\mathrm{s})}= \begin{cases}\frac{\epsilon-g}{1-g^{*} \epsilon} & \text { if }|g| \leq 1 ; \\ \frac{1-g \epsilon^{*}}{\epsilon^{*}-g^{*}} & \text { if }|g|>1 .\end{cases}$
we get

$$
\mathrm{E}(\epsilon)=\left\{\begin{array}{ll}
g & \text { if }|g| \leq 1 \\
1 / g^{*} & \text { if }|g|>1
\end{array} \quad \gamma \approx g \approx\langle\epsilon\rangle\right.
$$

Expectation value for the source ellipticities

Remember that ellipticities are complex numbers characterized by a phase.
Suppose that sources have intrinsically random phases. In this case, averaging over a number of sources, the expectation value of the ellipticity is...

$$
E\left(\epsilon_{s}\right)=0
$$

Averaging $\quad \epsilon^{(\mathrm{s})}= \begin{cases}\frac{\epsilon-g}{1-g^{*} \epsilon} & \text { if }|g| \leq 1 ; \\ \frac{1-g \epsilon^{*}}{\epsilon^{*}-g^{*}} & \text { if }|g|>1 .\end{cases}$
we get

$$
\mathrm{E}(\epsilon)=\left\{\begin{array}{ll}
g & \text { if }|g| \leq 1 \\
1 / g^{*} & \text { if }|g|>1
\end{array} \quad \gamma \approx g \approx\langle\epsilon\rangle\right.
$$

NOMS

The noise is given by the dispersion in the intrinsic ellipticity distribution

Averaging over N galaxies, the $\mathrm{I}-\sigma$

$$
\sigma_{\epsilon} / \sqrt{N}
$$ deviation from the mean ellipticity is

Thus, we can beat the noise by averaging over many galaxies!
\square select a number of galaxies in a region and assume that the shear is constant within the region
\square if the region is too large, the shear is smoothedincrease the number density of galaxies

Point spread function

PSF has several contributors: telescope (airy disk), atmosphere,AOCS,...

PSF can have weird shapes (anisotropy caused by coma, jitter, defocus, astigmatism, ecc.) and change across the field!

Point spread function

Intrinsic galaxy
(shape unknown)
Gravitational lensing Atmosphere and telescope causes a shear (g) cause a convolution
Detectors measure a pixelated image

Image also contains noise

$$
I^{\mathrm{obs}}(\boldsymbol{\theta})=\int \mathrm{d}^{2} \vartheta I(\vartheta) P(\boldsymbol{\theta}-\vartheta)
$$

PSF has several contributors: telescope (airy disk), atmosphere,AOCS,...

PSF can have weird shapes (anisotropy caused by coma, jitter, defocus, astigmatism, ecc.) and change across the field!

Point spread function

Image also contains noise

$$
I^{\mathrm{obs}}(\boldsymbol{\theta})=\int \mathrm{d}^{2} \vartheta I(\boldsymbol{\vartheta}) P(\boldsymbol{\theta}-\boldsymbol{\vartheta})
$$

PSF has several contributors: telescope (airy disk), atmosphere,AOCS,...

PSF can have weird shapes (anisotropy caused by coma, jitter, defocus, astigmatism, ecc.) and change across the field!

Tangential and cross component of the shear

Given a direction ϕ we can define a tangential and a cross component of the shear relative to this direction.
$\gamma_{\mathrm{t}}=-\mathcal{R e}\left[\gamma \mathrm{e}^{-2 \mathrm{i} \phi}\right] \quad, \quad \gamma_{\times}=-\mathcal{I} \mathrm{m}\left[\gamma \mathrm{e}^{-2 i \phi}\right]$

Note that, under this convention, "tangential" means both tangentially and radially oriented shears

With this we want to emphasize that lensing, being caused by a scalar potential is curl-free

The signs are chosen such that the tangential component is positive for tangentially distorted images, and it is negative for radially distorted images.

Fit of the tangential shear profile

Having measured the tangential shear profile, we can fit it with some parametric model

$$
\begin{aligned}
\text { SIS } \gamma(x) & =\left(\gamma_{1}^{2}+\gamma_{2}^{2}\right)^{1 / 2}=\frac{1}{2 x}=\kappa(x) \\
\text { NFW } \kappa(x) & =\frac{\Sigma\left(\xi_{0} x\right)}{\Sigma_{c r}}=2 \kappa_{s} \frac{f(x)}{x^{2}-1} \\
f(x) & =\left\{\begin{array}{rr}
1-\frac{2}{\sqrt{x^{2}-1}} \arctan \sqrt{\frac{x-1}{x+1}} & (x>1) \\
1-\frac{2}{\sqrt{1-x^{2}}} \operatorname{arctanh} \sqrt{\frac{1-x}{1+x}} & (x<1) \\
0 & (x=1)
\end{array}\right. \\
\gamma(x) & =\bar{\kappa}(x)-\kappa(x)
\end{aligned}
$$

Aperture densitometry

$$
\begin{gathered}
\zeta\left(\theta_{1}\right)=\bar{\kappa}\left(\theta_{1}\right)-\bar{\kappa}\left(\theta_{1}<\theta<\theta_{\max }\right)=\frac{2}{1-\theta_{1}^{2} / \theta_{\max }^{2}} \int_{\theta_{1}}^{\theta_{\max }}\left\langle\gamma_{t}\right\rangle d \ln \theta \\
\zeta_{c}\left(\theta_{1}\right)=\bar{\kappa}\left(\theta_{1}\right)-\bar{\kappa}\left(\theta_{2}<\theta<\theta_{\max }\right)=2 \int_{\theta_{1}}^{\theta_{2}}\left\langle\gamma_{t}\right\rangle d \ln \theta+\frac{2}{1-\theta_{2}^{2} / \theta_{\max }^{2}} \int_{\theta_{1}}^{\theta_{\max }}\left\langle\gamma_{t}\right\rangle d \ln \theta
\end{gathered}
$$

$$
m_{\zeta}(\theta)=\theta^{2} \zeta_{c}(\theta)=m(\theta)-m\left(\theta_{2}<\theta<\theta_{\max }\right)
$$

Aperture densitometry

$$
\begin{gathered}
\zeta\left(\theta_{1}\right)=\bar{\kappa}\left(\theta_{1}\right)-\bar{\kappa}\left(\theta_{1}<\theta<\theta_{\max }\right)=\frac{2}{1-\theta_{1}^{2} / \theta_{\max }^{2}} \int_{\theta_{1}}^{\theta_{\max }}\left\langle\gamma_{t}\right\rangle d \ln \theta \\
\zeta_{c}\left(\theta_{1}\right)=\bar{\kappa}\left(\theta_{1}\right)-\bar{\kappa}\left(\theta_{2}<\theta<\theta_{\max }\right)=2 \int_{\theta_{1}}^{\theta_{2}}\left\langle\gamma_{t}\right\rangle d \ln \theta+\frac{2}{1-\theta_{2}^{2} / \theta_{\max }^{2}} \int_{\theta_{1}}^{\theta_{\max }}\left\langle\gamma_{t}\right\rangle d \ln \theta
\end{gathered}
$$

Using the aperture densitometry one can estimate a lower limit to the mass within a given radius

$$
m_{\zeta}(\theta)=\theta^{2} \zeta_{c}(\theta)=m(\theta)-m\left(\theta_{2}<\theta<\theta_{\max }\right)
$$

Kaiser \& Squires

$$
\begin{aligned}
& \kappa(\vec{\theta})=\frac{1}{2}\left(\frac{\partial^{2} \psi(\vec{\theta})}{\partial \theta_{1}^{2}}+\frac{\partial^{2} \psi(\vec{\theta})}{\partial \theta_{2}^{2}}\right) \\
& \gamma_{1}(\vec{\theta})=\frac{1}{2}\left(\frac{\partial^{2} \psi(\vec{\theta})}{\partial \theta_{1}^{2}}-\frac{\partial^{2} \psi(\vec{\theta})}{\partial \theta_{2}^{2}}\right) \\
& \gamma_{2}(\vec{\theta})=\frac{\partial^{2} \psi(\vec{\theta})}{\partial \theta_{1} \partial \theta_{2}} . \\
& \binom{\hat{\gamma}_{1}}{\hat{\gamma}_{2}}=k^{-2}\binom{\left(k_{1}^{2}-k_{2}^{2}\right)}{2 k_{1} k_{2}} \hat{\kappa}, \\
& \hat{\kappa}=k^{-2}\left[\left(k_{1}^{2}-k_{2}^{2}\right),\left(2 k_{1} k_{2}\right)\right]\binom{\hat{\gamma}_{1}}{\hat{\gamma}_{2}} \\
& \kappa(\vec{\theta})=\frac{1}{\pi} \int d^{2} \theta^{\prime} \operatorname{Re}\left[\mathcal{D}^{*}\left(\vec{\theta}-\overrightarrow{\theta^{\prime}}\right) \gamma\left(\overrightarrow{\theta^{\prime}}\right)\right] \\
& \mathcal{D}(\vec{\theta})=\frac{\left(\theta_{2}^{2}-\theta_{1}^{2}\right)-2 \mathrm{i} \theta_{1} \theta_{2}}{\theta^{4}}
\end{aligned}
$$

$$
\begin{aligned}
\hat{\kappa}(\vec{k}) & =-\frac{1}{2}\left(k_{1}^{2}+k_{2}^{2}\right) \hat{\psi}(\vec{k}), \\
\hat{\gamma}_{1}(\vec{k}) & =-\frac{1}{2}\left(k_{1}^{2}-k_{2}^{2}\right) \hat{\psi}(\vec{k}), \\
\hat{\gamma}_{2}(\vec{k}) & =-k_{1} k_{2} \hat{\psi}(\vec{k}),
\end{aligned}
$$

Tracing the mass with weak lensing Kaiser \& Squires inversion

Tracing the mass with weak lensing Kaiser \& Squires inversion

CLI 232-I250
(Clowe et al.)

Tracing the mass with weak lensing

 Kaiser \& Squires inversion
Maximum-likelihood approach

Bartelmann et al. I996, Bradac et al. 2005, Merten et al. 2009

$$
\begin{aligned}
\gamma_{1} & =\frac{1}{2}(\psi, 11-\psi, 22) \\
\kappa & =\frac{1}{2}(\psi, 11+\psi, 22)
\end{aligned}
$$

$$
\langle\varepsilon\rangle=\frac{\gamma}{1-\kappa}
$$

$$
\begin{aligned}
& \frac{\partial \chi^{2}\left(\psi_{\mathrm{k}}\right)}{\partial \psi_{1}} \stackrel{!}{=} 0 \\
& \Rightarrow \mathcal{B}_{l k} \psi_{k}=\mathcal{V}_{l}
\end{aligned}
$$

Maximum-likelihood approach

Bartelmann et al. 1996, Bradac et al. 2005, Merten et al. 2009

Having seen the KS inversion method, we consider now a "maximum likelihood" method.

$$
\begin{aligned}
\gamma_{1} & =\frac{1}{2}(\psi, 11-\psi, 22) \quad \gamma_{2}=\psi, 12 \\
\kappa & =\frac{1}{2}(\psi, 11+\psi, 22)
\end{aligned}
$$

$\langle\varepsilon\rangle=\frac{\gamma}{1-\kappa}$

$$
\begin{aligned}
& \frac{\partial \chi^{2}\left(\psi_{\mathrm{k}}\right)}{\partial \psi_{1}} \stackrel{!}{=} 0 \\
& \Rightarrow \mathcal{B}_{k k} \psi_{k}=\mathcal{V}_{l}
\end{aligned}
$$

Combining WL+SL

$$
\left|(1-\kappa)^{2}-(\gamma)^{2}\right|_{\text {crit }}=0
$$

$$
\chi^{2}(\psi)=\chi_{\mathrm{w}}^{2}(\psi)+\chi_{\mathrm{s}}^{2}(\psi)
$$

$$
\frac{\partial \chi^{2}(\psi)}{\partial \psi} \stackrel{!}{=} 0
$$

Examples from simulations

merged_g72_xy_arc1.fits_0

Mass sheet degeneracy

A circular source is mapped by a lens with Jacobian A into an ellipse with axes:

$$
\begin{aligned}
& a=\frac{r}{1-\kappa-\gamma} \quad, \quad b=\frac{r}{1-\kappa+\gamma} \\
& \epsilon=\frac{a-b}{a+b}=\frac{2 \gamma}{2(1-\kappa)}=\frac{\gamma}{1-\kappa}
\end{aligned}
$$

Consider a lens whose Jacobian is $\lambda A \equiv A^{\prime}$
This transformation is equivalent to changing the convergence and the shear of the lens as:

$$
\gamma \rightarrow \lambda \gamma \quad(1-\kappa) \rightarrow \lambda(1-\kappa)
$$

By means of this transformation the ellipticity of the lensed image would be:

$$
\epsilon^{\prime}=\frac{\lambda \gamma}{\lambda(1-\kappa)}=\epsilon
$$

Thus, the ellipticity does not allow me to discriminate between lenses which differ by the factor λ

Performances

Performances

Performances

\section*{| 1.4 |
| :--- | :--- | :--- |}

De-projection

- Lensing measures projected masses.

cluster	z	r_{200} $\left[h^{-1} \mathrm{Mpc}\right]$	M_{200} $\left[h^{-1} M_{\odot}\right]$	b / a	c / a	θ_{x} $[\mathrm{deg}]$	θ_{y} $[\mathrm{deg}]$	θ_{z} $[\mathrm{deg}]$	c	r_{s} $\left[h^{-1} \mathrm{Mpc}\right]$
g 1	0.297	1.87	1.30×10^{15}	0.64	0.57	33.3	57.4	96.1	4.62	0.310
g 51	0.2335	1.71	8.85×10^{14}	0.78	0.65	81.5	75.59	16.8	5.37	0.241
g 72	0.297	1.60	8.15×10^{14}	0.31	0.29	98.9	92.8	9.4	3.99	0.299

- 3D masses can be derived making assumptions on the 3Dshape of the clusters and on their density profiles.
- Our choices: spherical symmetry, NFW profile

De-projection

- Lensing measures projected masses.

cluster	z	r_{200} $\left[h^{-1} \mathrm{Mpc}\right]$	M_{200} $\left[h^{-1} M_{\odot}\right]$	b / a	c / a	θ_{x} $[\mathrm{deg}]$	θ_{y} $[\mathrm{deg}]$	θ_{z} $[\mathrm{deg}]$	${ }^{c}$$r_{s}$ $\left[h^{-1} \mathrm{Mpc}\right]$	
g1	0.297	1.87	1.30×10^{15}	0.64	0.57	33.3	57.4	96.1	4.62	0.310
g51	0.2335	1.71	8.85×10^{14}	0.78	0.65	81.5	75.59	16.8	5.37	0.241
g72	0.297	1.60	8.15×10^{14}	0.31	0.29	98.9	92.8	9.4	3.99	0.299

- 3D masses can be derived making assumptions on the 3Dshape of the clusters and on their density profiles.
- Our choices: spherical symmetry, NFW profile

Recent measurements of cluster mass profiles

- CLASH means "Cluster Lensing And Supernova survey with Hubble"
- This program has been recently approved as a MultiCycle Treasury program using the HST (Cycles 18-20)

Approved MCLL proposals		
target	P.I.	orbits
Wide field	Sandra Faber Harry Ferguson	902
Andromeda	Julianne Dalcanton	828
Galaxy Clusters	Marc Postman Holland Ford	524

http://www.stsci.edu/institute/org/spd/mctp.html/

What will CLASH do?

- will observe 25 galaxy clusters (20 orbits/cluster) in 16 ACS \& WFC3 filters
- looking for strong lensing events and highly magnified sources behind clusters
- insights into structure formation
- mass profiles
- cluster and lensed galaxies
- high redshift ($\mathrm{z}>$ r) galaxies
- looking for SNIa in parallel fields: dark energy

What will CLASH do?

- will observe 25 galaxy clusters (20 orbits/cluster) in 16 ACS \& WFC3 filters
- looking for strong lensing events and highly magnified sources behind clusters
- insights into structure formation
- mass profiles
- cluster and lensed gailaxies
- high redshift ($\mathrm{z}>$ ry) galaxies
- looking for SNIa in parallel fields: dark energy

