Lensing by (the most) massive structures in the universe

e today: basics of lensing

e tomorrow: how can we investigate the matter content of galaxy clusters using
lensing (strong and weak)

e \Wednesday: cosmology with galaxy clusters
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ecture 1: a concise introduction to gravitational
ensing

Massimo Meneghetti
INAF - Osservatorio Astronomico di Bologna
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Gravitational lensing

o Greneral relativity (GR): explains gravity in terms of assemblies of mass and
enerqy curving the space-time

o photons feel gravity similarly to massive particles

e how can we formalize this?
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Gravitational lensing

o Greneral relativity (GR): explains gravity in terms of assemblies of mass and
enerqy curving the space-time

o photons feel gravity similarly to massive particles

¢ how can we formalize this?

ds® =, datda” = (da¥)? — (dF)* = 2dt® — (dT)?

1+ 22 0 0 0
B 0 —(1-22) 0 0
ymy v 0 0 _( . 20_<21>)
0 0 0 —(1-22)
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Gravitational lensing

o Greneral relativity (GR): explains gravity in terms of assemblies of mass and
enerqy curving the space-time

o photons feel gravity similarly to massive particles

¢ how can we formalize this?

2P 2P .
ds® = g datda” = (1 + = Adt? — (1 — = (dz)?
1+ 22 0 0 0
g - 0 —(1-22) 0 ) 0
A ) ) ~(1-F) 20
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Gravitational lensing

o Greneral relativity (GR): explains gravity in terms of assemblies of mass and
enerqy curving the space-time

o photons feel gravity similarly to massive particles

¢ how can we formalize this?

2P 2P
ds* = g, datda” = 1+ 2 A2 — (1 — 2 (dZ)?
20 2P
1+ C_2 cht2| — (1 — C_2 (df)2
T 22 1 25
dt 1 — 22 2 1+ 22 -
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Fermat principle
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Fermat principle

Classical optics: Snell law
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Fermat principle

Classical optics: Snell law General relativity: deflection angle
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Deflection angle for a point mass

(I):_GM r:\/a:2+y2+22:\/b2—|—z2 b:\/x2+y2

r
- 0, \ GM [ z
vio=(gm ) =% ()
5 2GM [ =z oo dz
al) = 2 2 2\3/2
c Y ) ) (b2 +22)%
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Deflection angle for the general lens

. &0 2 5 v S =&
For an ensamble of point masses: (&) =) & &) =—5) M FET

For a more general three-dimensional
distribution of matter, using the thin Y(€) = / p(€.z) dz
screen approximation:
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Lensing potential
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Some examples

Lens Model »(6) a(6)
Point mass Das 4GM In |6 Das 4GM

) , Dgys 4mo? Dgys 4mo?
Singul th 1 sph 6

ingular isothermal sphere D. 2 > 16| Dg )~

, Dgys 4o 9 on1/2 Dgs 4mo 7,

Softened isothermal sphere D. & (62 + 6°) D, & (g2 102
Constant density sheet g 6 k|6
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Lens equation

and the apparent positions of the
source when it is lensed by a
matter distribution.

- The lens equation links the true
Source plane

|

— —

3=6-—a)

Kns plane

Observer
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PoiNt mass

Dy 4G M _ \/—lGﬂ[ Dy s 92
( ) Dg Dy c? Il‘ ’ E 2 Dy Ds g=0 6

multiple images and magnification!

! e ' — 2 2
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More complicated lenses: time delay

Let’s go back a few slides and consider
again the concept of effective refraction
Index:

/
n=c/c = — R
/ 1 + = C
This concept implies that, when photons
travel along a ray, they will appear to travel
slower than in vacuum and will take an
extra-time to pass by a massive object:

2

Atg?“a,’u = —C—3 ddz

In a cosmological context:

Atg’r‘a,v

2
X (1 —+ Zd)\I/

(Shapiro delay)

- -

D

An additional contribution to the time delay
comes from the extra geometrical path
followed by light when it gets deflected
towards the observer: .

%y

AS:€§

Again, putting this in a cosmological
context:

D, Dy,
Atgeom — ad
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—
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More complicated lenses: time delays
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More complicated lenses: time delays

L L The solutions of the lens
(0 —8)—Veb=0 Vo [5(9 - B)? — } equation aarresgaw& ko

\\ the stationary points of

the time delay function
w v Y

(maxima, minima, saddle

points)
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More complicated lenses: time delays

L L The solutions of the lens
(0 —8)—Veb=0 \Z {5(9 — B)? — } equation tarres[mnd ko

S~ e stationary points of

— / the time delay function
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points)
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Time delay surfaces
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31608+656

Koopmans et al. 2003
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31608+656
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Lens mapping and distortions

Consider the Limit of i = d- a *)
small deflections: in this 7
case the lens equa&iov\ 3 = a—?ﬁ — A)

can be wriktken as:

_ 8.7 - 0%@) . 32?;9(_’)
ada 99 N (6” (’)Oj ) N (5” (’)61-(')03-

S
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Lens mapping and distortions

1
converqgence K = 5 (11 + a2)
0% =
= Vij 1 .
00;00; ’ w0 = 5 (Y11 — ¥22) = ’Y(é) cos [ )]
Shear .
72(9_) = Yrp =Yg = ’Y(é) S [2¢(9)] -
_ (1-s-m -m
A= ( —7Y2 l—k+m )
B _ 1 0)  [cos2¢ sin2¢
= (1-x) (O 1) ! (sin2¢5 —cos2¢)
Convergence alone
Eigenvalues ~
7N ﬂ
Ap = 1—kr—7 k /' — ,
_ B — |
Ar = 1—kK+7y N

Source

Convergence + Shear
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Critical lines and caustics

The inverse of the determinant
Jacobian measures the magnification:

The magnification diverqes where the
eigenvalues of A vanish:

These two conditions define the
critical Lines

These are Lines on the lens F’Lav\e
which are mawed own the coauskics on
the source PLQM@.

56° 1

52— M= Gea

)\t = 1 —K— 7Y

A = 1—=—kK+7

= det A =0

A
tangential

radial eigenvector
elgenvector

)

Critical Lline
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—Xamples
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Convergence

Convargencs

. u(Z . ¢2 D
k(L) = z( ) with X, = e DL;LS
cr
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Shear
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Magnification

Magnification

= det M = =
= a8 det A (1—k)%2—~2
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Critical lines and caustics
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CL/CA vs source redshift
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Tangential and radial distortions

A A
%1 x1
< Mg < X ¢
%2 / xR /
Tangential Radial
Critical Line Critical Line
M=l—kKk—v=0K1 M=l—k+yvy=0K1
5 0 B l—rk—~v O
A(O’xc):<o 1—/<;+7> A(O’xc)_< 0 5)

If the source is circular, how is its elliptical image oriented?
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Tangential and radial distortions

A A
%1 x1
< <
%2 / %2
Tangential Radial
Critical Line Critical Line
M=1l—-KrK—7=0K1 M=1l—r+7y=0K1
5 0 B l—rk—~v O

If the source is circular, how is its elliptical image oriented?
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Second order lensing

dy;

o Ox;0xy,  Oxy,

— Dt 1 — Ao
_ 271~ 72,2
Dij1 = <

—72.1

F=F)+1F=(v1.1+7.2)+2y21 —7.2)

First flexion

1 9%y

a —~ ._—17.‘ — . i
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Second order lensing

original
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lmage configurations
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Note that multiple images exist only if the critical Lines
and the caustics exist!
This condition defines a “strong” lens,
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Conclusions

From the fact that masses perturb the space-time, we
e_xpet:&:

1. deflections (displacements)

R. increased mulkiplicity

3. kime detajs

4. distortions (radial, tangential)

Tuesday, October 5, 2010



Now real observations...
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Now real observations...
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Now real observations...

MACS J1149.5+2223
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Now real observations...

Galixy Cluster SDSS J1004+4112
HST AG§/WFC_

\ .Lenséd
. Galaxy

Q'.

O Lensed ﬁ |

N

Supernova Quasar
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