Lensing by (the most) massive structures in the universe

- today: basics of lensing
- tomorrow: how can we investigate the matter content of galaxy clusters using lensing (strong and weak)
- Wednesday: cosmology with galaxy clusters

Lecture 1: a concise introduction to gravitational lensing

Massimo Meneghetti
INAF - Osservatorio Astronomico di Bologna
Dipartimento di Astronomia - Università di Bologna

Gravitational lensing

- General relakiviky (GR): explains gravily in kerms of assemblies of mass and energy curving the space-kime
- photons feel graviky similarly to massive particles
- how can we formalize this?

Gravitational lensing

- General relakiviky (GR): explains gravily in kerms of assemblies of mass and energy curving the space-kime
- photons feel graviky similarly to massive particles
- how can we formalize this?

$$
\mathrm{d} s^{2}=\eta_{\mu \nu} \mathrm{d} x^{\mu} \mathrm{d} x^{\nu}=\left(\mathrm{d} x^{0}\right)^{2}-(\mathrm{d} \vec{x})^{2}=c^{2} \mathrm{~d} t^{2}-(\mathrm{d} \vec{x})^{2}
$$

Gravitational lensing

- General relakiviky (GR): explains gravily in kerms of assemblies of mass and energy curving the space-kime
- photons feel gravity similarly to massive particles
- how can we formalize this?

$$
\begin{gathered}
\mathrm{d} s^{2}=\eta_{\mu \nu} \mathrm{d} x^{\mu} \mathrm{d} x^{\nu}=\left(\mathrm{d} x^{0}\right)^{2}-(\mathrm{d} \vec{x})^{2}=c^{2} \mathrm{~d} t^{2}-(\mathrm{d} \vec{x})^{2} \\
\eta_{\mu \nu}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right)
\end{gathered}
$$

Gravitational lensing

- General relakiviky (GR): explains gravily in kerms of assemblies of mass and energy curving the space-kime
- photons feel gravity similarly to massive particles
- how can we formalize this?

$$
\begin{gathered}
\mathrm{d} s^{2}=\eta_{\mu \nu} \mathrm{d} x^{\mu} \mathrm{d} x^{\nu}=\left(\mathrm{d} x^{0}\right)^{2}-(\mathrm{d} \vec{x})^{2}=c^{2} \mathrm{~d} t^{2}-(\mathrm{d} \vec{x})^{2} \\
\eta_{\mu \nu} \rightarrow g_{\mu \nu}=\left(\begin{array}{cccc}
1+\frac{2 \Phi}{c^{2}} & 0 & 0 & 0 \\
0 & -\left(1-\frac{2 \Phi}{c^{2}}\right) & 0 & 0 \\
0 & 0 & -\left(1-\frac{2 \Phi}{c^{2}}\right) & \\
0 & 0 & 0 & -\left(1-\frac{2 \Phi}{c^{2}}\right)
\end{array}\right)
\end{gathered}
$$

Gravitational lensing

- General relakiviky (GR): explains gravily in kerms of assemblies of mass and energy curving the space-kime
- photons feel gravity similarly to massive particles
- how can we formalize this?

$$
\begin{gathered}
\mathrm{d} s^{2}=g_{\mu \nu} \mathrm{d} x^{\mu} \mathrm{d} x^{\nu}=\left(1+\frac{2 \Phi}{c^{2}}\right) c^{2} \mathrm{~d} t^{2}-\left(1-\frac{2 \Phi}{c^{2}}\right)(\mathrm{d} \vec{x})^{2} \\
\eta_{\mu \nu} \rightarrow g_{\mu \nu}=\left(\begin{array}{cccc}
1+\frac{2 \Phi}{c^{2}} & 0 & 0 & 0 \\
0 & -\left(1-\frac{2 \Phi}{c^{2}}\right) & 0 & 0 \\
0 & 0 & -\left(1-\frac{2 \Phi}{c^{2}}\right) & \\
0 & 0 & 0 & -\left(1-\frac{2 \Phi}{c^{2}}\right)
\end{array}\right)
\end{gathered}
$$

Gravitational lensing

- General relakiviky (GR): explains gravily in terms of assemblies of mass and energy curving the space-time
- photons feel gravity similarly to massive particles
- how can we formalize this?

$$
\begin{gathered}
\mathrm{d} s^{2}=g_{\mu \nu} \mathrm{d} x^{\mu} \mathrm{d} x^{\nu}=\left(1+\frac{2 \Phi}{c^{2}}\right) c^{2} \mathrm{~d} t^{2}-\left(1-\frac{2 \Phi}{c^{2}}\right)(\mathrm{d} \vec{x})^{2} \\
\left(1+\frac{2 \Phi}{c^{2}}\right) c^{2} \mathrm{~d} t^{2}=\left(1-\frac{2 \Phi}{c^{2}}\right)(\mathrm{d} \vec{x})^{2} \\
c^{\prime}=\frac{|\mathrm{d} \vec{x}|}{\mathrm{d} t}=c \sqrt{\frac{1+\frac{2 \Phi}{c^{2}}}{1-\frac{2 \Phi}{c^{2}}}} \approx c\left(1+\frac{2 \Phi}{c^{2}}\right) \quad n=c / c^{\prime}=\frac{1}{1+\frac{2 \Phi}{c^{2}}} \approx 1-\frac{2 \Phi}{c^{2}}
\end{gathered}
$$

Fermat principle

Fermat principle

Classical optics: Snell law

$\sin \theta_{I}=n \sin \theta_{R}$

Fermat principle

Classical optics: Snell law

$\sin \theta_{I}=n \sin \theta_{R}$

General relativity: deflection angle

$$
\overrightarrow{\hat{\alpha}}=-\int \vec{\nabla}_{\perp} n d l=\frac{2}{c^{2}} \int \vec{\nabla}_{\perp} \Phi d l
$$

$$
\hat{\hat{\alpha}}(b)=\frac{2}{c^{2}} \int_{-\infty}^{+\infty} \vec{\nabla}_{\perp} \phi \mathrm{d} z
$$

Deflection angle for a point mass

$$
\begin{aligned}
& \Phi=-\frac{G M}{r} \quad r=\sqrt{x^{2}+y^{2}+z^{2}}=\sqrt{b^{2}+z^{2}} \quad b=\sqrt{x^{2}+y^{2}} \\
& \vec{\nabla}_{\perp} \Phi=\binom{\partial_{x} \Phi}{\partial_{y} \Phi}=\frac{G M}{r^{3}}\binom{x}{y} \\
& \begin{aligned}
\hat{\alpha}(b) & =\frac{2 G M}{c^{2}}\binom{x}{y} \int_{-\infty}^{+\infty} \frac{d z}{\left(b^{2}+z^{2}\right)^{3 / 2}} \\
& =\frac{4 G M}{c^{2}}\binom{x}{y}\left[\frac{z}{b^{2}\left(b^{2}+z^{2}\right)^{1 / 2}}\right]_{0}^{\infty}=\frac{4 G M}{c^{2} b}\binom{\cos \phi}{\sin \phi} \\
\binom{x}{y} & =b\binom{\cos \phi}{\sin \phi}
\end{aligned}
\end{aligned}
$$

Deflection angle for the general lens

For an ensamble of point masses: $\quad \hat{\hat{\alpha}}(\vec{\xi})=\sum_{i} \hat{\vec{\alpha}}_{i}\left(\vec{\xi}-\vec{\xi}_{i}\right)=\frac{4 G}{c^{2}} \sum_{i} M_{i} \frac{\vec{\xi}-\vec{\xi}_{i}}{\left|\vec{\xi}-\vec{\xi}_{i}\right|^{2}}$

For a more general three-dimensional distribution of matter, using the thin screen approximation:

$$
\Sigma(\vec{\xi})=\int \rho(\vec{\xi}, z) \mathrm{d} z
$$

$$
\overrightarrow{\hat{\alpha}}(\vec{\xi})=\frac{4 G}{c^{2}} \int \frac{\left(\vec{\xi}-\overrightarrow{\xi^{\prime}}\right) \Sigma\left(\overrightarrow{\xi^{\prime}}\right)}{\left|\vec{\xi}-\overrightarrow{\xi^{\prime}}\right|^{2}} \mathrm{~d}^{2} \xi^{\prime}
$$

Lensing potential

$$
\begin{gathered}
\hat{\Psi}(\vec{\theta})=\frac{D_{\mathrm{LS}}}{D_{\mathrm{L}} D_{\mathrm{S}}} \frac{2}{c^{2}} \int \Phi\left(D_{\mathrm{L}} \vec{\theta}, z\right) \mathrm{d} z \\
\vec{\nabla}_{\theta} \hat{\psi}=D_{L} \vec{\nabla}_{\xi} \hat{\psi} \\
=\frac{2}{c^{2}} \frac{D_{L S}}{D_{S}} \int \vec{\nabla}_{\perp} \Phi d z \\
=\vec{\alpha}
\end{gathered} \left\lvert\, \begin{aligned}
& \triangle \Phi=4 \pi G \rho \\
& \Sigma(\vec{\theta})=\frac{1}{4 \pi G} \int_{-\infty}^{+\infty} \triangle \Phi \mathrm{d} z \\
& \Sigma_{\mathrm{cr}}=\frac{c^{2}}{4 \pi G} \frac{D_{\mathrm{S}}}{D_{\mathrm{L}} D_{\mathrm{LS}}} \\
& \kappa(\vec{\theta})=\frac{1}{c^{2}} \frac{D_{\mathrm{L}} D_{\mathrm{LS}}}{D_{\mathrm{S}}} \int_{-\infty}^{+\infty} \Delta \Phi \mathrm{d} z \\
& \vec{\alpha}=\vec{\nabla}_{\theta} \hat{\psi}
\end{aligned}\right.
$$

Some examples

Lens Model	$\psi(\theta)$	$\alpha(\theta)$
Point mass	$\frac{D_{\mathrm{ds}}}{D_{\mathrm{s}}} \frac{4 G M}{D_{\mathrm{d}} c^{2}} \ln \|\theta\|$	$\frac{D_{\mathrm{ds}}}{D_{\mathrm{s}}} \frac{4 G M}{c^{2} D_{\mathrm{d}}\|\theta\|}$
Singular isothermal sphere	$\frac{D_{\mathrm{ds}}}{D_{\mathrm{s}}} \frac{4 \pi \sigma^{2}}{c^{2}}\|\theta\|$	$\frac{D_{\mathrm{ds}}}{D_{\mathrm{s}}} \frac{4 \pi \sigma^{2}}{c^{2}}$
Softened isothermal sphere	$\frac{D_{\mathrm{ds}}}{D_{\mathrm{s}}} \frac{4 \pi \sigma^{2}}{c^{2}}\left(\theta_{\mathrm{c}}^{2}+\theta^{2}\right)^{1 / 2}$	$\frac{D_{\mathrm{ds}}}{D_{\mathrm{s}}} \frac{4 \pi \sigma^{2}}{c^{2}} \frac{\theta}{\left(\theta_{\mathrm{c}}^{2}+\theta^{2}\right)^{1 / 2}}$
Constant density sheet	$\frac{\kappa}{2} \theta^{2}$	$\kappa\|\theta\|$

Lens equation

The lens equation links the true and the apparent positions of the source when it is lensed by a matter distribution.

$$
\vec{\beta}=\vec{\theta}-\vec{\alpha}(\vec{\theta})
$$

Point mass

$$
\Psi(\theta)=\frac{D_{L S}}{D_{S}} \frac{4 G M}{D_{L} c^{2}} \ln |\theta| \quad \theta_{E} \equiv \sqrt{\frac{4 G M}{c^{2}} \frac{D_{\mathrm{LS}}}{D_{\mathrm{L}} D_{\mathrm{S}}}} \quad \beta=\theta-\frac{\theta_{\mathrm{E}}^{2}}{\theta}
$$

multiple images and magnification!

$$
\theta_{ \pm}=\frac{1}{2}\left(\beta \pm \sqrt{\beta^{2}+4 \theta_{\mathrm{E}}^{2}}\right)
$$

More complicated lenses: time delay

Let's go back a few slides and consider again the concept of effective refraction index:

$$
n=c / c^{\prime}=\frac{1}{1+\frac{2 \Phi}{c^{2}}} \approx 1-\frac{2 \Phi}{c^{2}}
$$

This concept implies that, when photons travel along a ray, they will appear to travel slower than in vacuum and will take an extra-time to pass by a massive object:

$$
\Delta t_{\text {grav }}=-\frac{2}{c^{3}} \int \Phi d z
$$

In a cosmological context:

$$
\begin{aligned}
\Delta t_{\text {grav }} & =-\frac{2}{c^{3}}\left(1+z_{d}\right) \int \Phi d z \\
& \propto\left(1+z_{d}\right) \Psi
\end{aligned}
$$

(Shapiro delay)

An additional contribution to the time delay comes from the extra geometrical path followed by light when it gets deflected towards the observer:

$$
\Delta s=\vec{\xi} \frac{\overrightarrow{\hat{a}}}{2}
$$

Again, putting this in a cosmological context:

$$
\begin{aligned}
\Delta t_{\text {geom }} & =\left(1+z_{d}\right) \frac{D_{d} D_{d s}}{2 D_{s} c} \hat{\alpha}^{2} \\
& \propto\left(1+z_{d}\right)(\vec{\theta}-\vec{\beta})^{2}
\end{aligned}
$$

More complicated lenses: time delays

$$
(\vec{\theta}-\vec{\beta})-\vec{\nabla}_{\theta} \psi=0 \quad \vec{\nabla}_{\theta}\left[\frac{1}{2}(\vec{\theta}-\vec{\beta})^{2}-\psi\right]=0
$$

More complicated lenses: time delays

$$
\begin{aligned}
(\vec{\theta}-\vec{\beta}) & -\vec{\nabla}_{\theta} \psi=0 \quad \vec{\nabla}_{\theta}\left[\frac{1}{2}(\vec{\theta}-\vec{\beta})^{2}-\psi\right]=0 \\
t(\vec{\theta}) & =\frac{\left(1+z_{L}\right)}{c} \frac{D_{L} D_{S}}{D_{L S}}\left[\frac{1}{2}(\vec{\theta}-\vec{\beta})^{2}-\psi(\vec{\theta})\right] \\
& =t_{\text {geom }}+t_{\text {grav }}
\end{aligned}
$$

More complicated lenses: time delays

$$
\begin{aligned}
(\vec{\theta}-\vec{\beta}) & -\vec{\nabla}_{\theta} \psi=0 \quad \vec{\nabla}_{\theta}\left[\frac{1}{2}(\vec{\theta}-\vec{\beta})^{2}-\psi\right]=0 \\
t(\vec{\theta}) & =\frac{\left(1+z_{L}\right)}{c} \frac{D_{L} D_{S}}{D_{L S}}\left[\frac{1}{2}(\vec{\theta}-\vec{\beta})^{2}-\psi(\vec{\theta})\right] \\
& =t_{\text {geom }}+t_{\text {grave }}
\end{aligned}
$$

The solutions of the lens equation correspond to the stationary points of the time delay function (maxima, minima, saddle points)

More complicated lenses: time delays

The solutions of the lens equation correspond to the stationary points of
the time delay function (maxima, minima, saddle points)

Time delay surfaces

B1608+656

Koopmans et al. 2003

B1608+656

Koopmans et al. 2003

Lens mapping and distortions

Consider the limit of small deflections: in this

$$
\begin{aligned}
\vec{\beta} & =\vec{\theta}-\vec{\alpha}(\vec{\theta}) \\
\vec{\beta} & =\frac{\partial \vec{\beta}}{\partial \vec{\theta}} \vec{\theta}=A \vec{\theta}
\end{aligned}
$$ can be written as:

$$
\mathcal{A} \equiv \frac{\partial \vec{\beta}}{\partial \vec{\theta}}=\left(\delta_{i j}-\frac{\partial \alpha_{i}(\vec{\theta})}{\partial \theta_{j}}\right)=\left(\delta_{i j}-\frac{\partial^{2} \psi(\vec{\theta})}{\partial \theta_{i} \partial \theta_{j}}\right)
$$

Lens mapping and distortions

$$
\begin{array}{ll}
\text { convergence } & \kappa=\frac{1}{2}\left(\psi_{11}+\psi_{22}\right) \\
\text { Shear } & \gamma_{1}(\vec{\theta})=\frac{1}{2}\left(\psi_{11}-\psi_{22}\right) \equiv \gamma(\vec{\theta}) \cos [2 \phi(\vec{\theta})], \\
& \gamma_{2}(\vec{\theta})=\psi_{12}=\psi_{21} \equiv \gamma(\vec{\theta}) \sin [2 \phi(\vec{\theta})] .
\end{array}
$$

$$
\mathcal{A}=\left(\begin{array}{cc}
1-\kappa-\gamma_{1} & -\gamma_{2} \\
-\gamma_{2} & 1-\kappa+\gamma_{1}
\end{array}\right)
$$

$$
=(1-\kappa)\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)-\gamma\left(\begin{array}{cc}
\cos 2 \phi & \sin 2 \phi \\
\sin 2 \phi & -\cos 2 \phi
\end{array}\right)
$$

Eigenvalues

$$
\begin{aligned}
\lambda_{t} & =1-\kappa-\gamma \\
\lambda_{r} & =1-\kappa+\gamma
\end{aligned}
$$

Critical lines and caustics

The inverse of the determinank Jacobian measures the magnification:

The magnification diverges where the eigenvalues of A vanish:

These two conditions define the cribical lines

These are lines on the lens plane which are mapped on the caustics on the source plane

$$
\frac{\delta \theta^{2}}{\delta \beta^{2}}=\operatorname{det} \mathcal{M}=\frac{1}{\operatorname{det} \mathcal{A}}
$$

$$
\begin{aligned}
\lambda_{t}= & 1-\kappa-\gamma \\
\lambda_{r}= & 1-\kappa+\gamma \\
\Rightarrow \quad & \operatorname{det} A=0
\end{aligned}
$$

Critical line

Examples

Convergence

$$
\kappa(\vec{x}) \equiv \frac{\Sigma(\vec{x})}{\Sigma_{\mathrm{cr}}} \quad \text { with } \quad \Sigma_{\mathrm{cr}}=\frac{c^{2}}{4 \pi G} \frac{D_{\mathrm{S}}}{D_{\mathrm{L}} D_{\mathrm{LS}}}
$$

Shear

$$
\begin{aligned}
\gamma_{1}(\vec{x}) & =\frac{1}{2}\left(\Psi_{11}-\Psi_{22}\right) \\
\gamma_{2}(\vec{x}) & =\Psi_{12}=\Psi_{21}
\end{aligned}
$$

Magnification

$$
\mu \equiv \operatorname{det} M=\frac{1}{\operatorname{det} A}=\frac{1}{(1-\kappa)^{2}-\gamma^{2}}
$$

Critical lines and caustics

$$
\begin{aligned}
\mu_{\mathrm{t}} & =\frac{1}{\lambda_{\mathrm{t}}}=\frac{1}{1-\kappa-\gamma} \\
\mu_{\mathrm{r}} & =\frac{1}{\lambda_{\mathrm{r}}}=\frac{1}{1-\kappa+\gamma}
\end{aligned}
$$

CL/CA vs source redshift

$$
D=\frac{D_{\mathrm{d}} D_{\mathrm{ds}}}{D_{\mathrm{s}}}
$$

Tangential and radial distortions

Tangential
Cribical line
$\lambda_{t}=1-\kappa-\gamma=\delta \ll 1$
$A\left(0, x_{c}\right)=\left(\begin{array}{cc}\delta & 0 \\ 0 & 1-\kappa+\gamma\end{array}\right)$

Radial
Critical line

$$
\begin{gathered}
\lambda_{t}=1-\kappa+\gamma=\delta \ll 1 \\
A\left(0, x_{c}\right)=\left(\begin{array}{cc}
1-\kappa-\gamma & 0 \\
0 & \delta
\end{array}\right)
\end{gathered}
$$

If the source is circular, how is its elliptical image oriented?

Tangential and radial distortions

Tangential
Cribical line
$\lambda_{t}=1-\kappa-\gamma=\delta \ll 1$
$A\left(0, x_{c}\right)=\left(\begin{array}{cc}\delta & 0 \\ 0 & 1-\kappa+\gamma\end{array}\right)$

Radial
Critical line

$$
\begin{gathered}
\lambda_{t}=1-\kappa+\gamma=\delta \ll 1 \\
A\left(0, x_{c}\right)=\left(\begin{array}{cc}
1-\kappa-\gamma & 0 \\
0 & \delta
\end{array}\right)
\end{gathered}
$$

If the source is circular, how is its elliptical image oriented?

Tangential and radial distortions

Tangential
Cribical line
$\lambda_{t}=1-\kappa-\gamma=\delta \ll 1$
$A\left(0, x_{c}\right)=\left(\begin{array}{cc}\delta & 0 \\ 0 & 1-\kappa+\gamma\end{array}\right)$

Radial
Critical line

$$
\begin{gathered}
\lambda_{t}=1-\kappa+\gamma=\delta \ll 1 \\
A\left(0, x_{c}\right)=\left(\begin{array}{cc}
1-\kappa-\gamma & 0 \\
0 & \delta
\end{array}\right)
\end{gathered}
$$

If the source is circular, how is its elliptical image oriented?

Second order lensing

$$
\begin{aligned}
& y_{i} \simeq \frac{\partial y_{i}}{\partial x_{j}} x_{j}+\frac{1}{2} \frac{\partial^{2} y_{i}}{\partial x_{j} \partial x_{k}} x_{j} x_{k} \\
& D_{i j k}=\frac{\partial^{2} y_{i}}{\partial x_{j} \partial x_{k}}=\frac{\partial A_{i j}}{\partial x_{k}} \quad y_{i} \simeq A_{i j} x_{j}+\frac{1}{2} D_{i j k} x_{j} x_{k} \\
& D_{i j 1}=\left(\begin{array}{cc}
-2 \gamma_{1,1}-\gamma_{2,2} & -\gamma_{2,1} \\
-\gamma_{2,1} & -\gamma_{2,2}
\end{array}\right) \quad D_{i j 2}=\left(\begin{array}{cc}
-\gamma_{2,1} & -\gamma_{2,2} \\
-\gamma_{2,2} & 2 \gamma_{1,2}-\gamma_{2,1}
\end{array}\right) \\
& F=F_{1}+i F_{2}=\left(\gamma_{1,1}+\gamma_{2,2}\right)+i\left(\gamma_{2,1}-\gamma_{1,2}\right) \\
& \text { First flexion } \\
& G=G_{1}+i G_{2}=\left(\gamma_{1,1}-\gamma_{2,2}\right)+i\left(\gamma_{2,1}+\gamma_{1,2}\right) \\
& \text { Second flexion } \\
& \gamma_{1,1}=\frac{1}{2}\left(\Psi_{111}-\Psi_{221}\right) \\
& F_{1}=\frac{1}{2}\left(\Psi_{111}-\Psi_{221}\right)+\Psi_{122}=\frac{1}{2}\left(\Psi_{111}+\Psi_{221}\right)=\frac{\partial \kappa}{\partial x_{1}} \\
& \gamma_{2,2}=\Psi_{122} \\
& \gamma_{2,1}=\Psi_{121} \\
& \gamma_{1,2}=\frac{1}{2}\left(\Psi_{112}-\Psi_{222}\right) \\
& F_{2}=\frac{1}{2}\left(\Psi_{112}-\Psi_{222}\right)+\Psi_{121}=\frac{1}{2}\left(\Psi_{112}+\Psi_{222}\right)=\frac{\partial \kappa}{\partial x_{2}} \\
& \vec{F}=\vec{\nabla} \kappa
\end{aligned}
$$

Second order lensing

Image configurations

Note that multiple images exist only if the critical lines and the caustics exist!
This condition defines a "strong" lens.

Conclusions

From the fact that masses perturb the space-time, we expect:

1. deflections (displacements)
2. increased multiplicity
3. time delays
4. distortions (radial, tangential)

Now real observations...

Now real observations...

Now real observations...

MACS J1149.5+2223

Now real observations...

