Lensing by (the most) massive structures in the universe

- today: basics of lensing
- tomorrow: how can we investigate the matter content of galaxy clusters using lensing (strong and weak)
- Wednesday: cosmology with galaxy clusters

Lecture 1: a concise introduction to gravitational lensing

Massimo Meneghetti INAF - Osservatorio Astronomico di Bologna Dipartimento di Astronomia - Università di Bologna

- General relativity (GR): explains gravity in terms of assemblies of mass and energy curving the space-time
- · photons feel gravity similarly to massive particles
- how can we formalize this?

- General relativity (GR): explains gravity in terms of assemblies of mass and energy curving the space-time
- photons feel gravity similarly to massive particles
- how can we formalize this?

$$ds^{2} = \eta_{\mu\nu} dx^{\mu} dx^{\nu} = (dx^{0})^{2} - (d\vec{x})^{2} = c^{2} dt^{2} - (d\vec{x})^{2}$$

- General relativity (GR): explains gravity in terms of assemblies of mass and energy curving the space-time
- photons feel gravity similarly to massive particles
- how can we formalize this?

$$ds^{2} = \eta_{\mu\nu} dx^{\mu} dx^{\nu} = (dx^{0})^{2} - (d\vec{x})^{2} = c^{2} dt^{2} - (d\vec{x})^{2}$$

$$\eta_{\mu\nu} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$

- General relativity (GR): explains gravity in terms of assemblies of mass and energy curving the space-time
- photons feel gravity similarly to massive particles
- how can we formalize this?

$$ds^{2} = \eta_{\mu\nu} dx^{\mu} dx^{\nu} = (dx^{0})^{2} - (d\vec{x})^{2} = c^{2} dt^{2} - (d\vec{x})^{2}$$

$$\eta_{\mu\nu} \to g_{\mu\nu} = \begin{pmatrix} 1 + \frac{2\Phi}{c^2} & 0 & 0 & 0 \\ 0 & -(1 - \frac{2\Phi}{c^2}) & 0 & 0 \\ 0 & 0 & -(1 - \frac{2\Phi}{c^2}) \\ 0 & 0 & 0 & -(1 - \frac{2\Phi}{c^2}) \end{pmatrix}$$

- General relativity (GR): explains gravity in terms of assemblies of mass and energy curving the space-time
- photons feel gravity similarly to massive particles
- how can we formalize this?

$$\eta_{\mu\nu} \to g_{\mu\nu} = \begin{pmatrix} 1 + \frac{2\Phi}{c^2} & 0 & 0 & 0 \\ 0 & -(1 - \frac{2\Phi}{c^2}) & 0 & 0 \\ 0 & 0 & -(1 - \frac{2\Phi}{c^2}) \\ 0 & 0 & 0 & -(1 - \frac{2\Phi}{c^2}) \end{pmatrix}$$

- General relativity (GR): explains gravity in terms of assemblies of mass and energy curving the space-time
- photons feel gravity similarly to massive particles
- how can we formalize this?

Fermat principle

Fermat principle

Classical optics: Snell law

$$\sin \theta_I = n \sin \theta_R$$

Fermat principle

$$\sin \theta_I = n \sin \theta_R$$

Deflection angle for a point mass

$$\Phi = -\frac{GM}{r} \qquad r = \sqrt{x^2 + y^2 + z^2} = \sqrt{b^2 + z^2} \qquad b = \sqrt{x^2 + y^2}$$
$$\vec{\nabla}_{\perp} \Phi = \begin{pmatrix} \partial_x \Phi \\ \partial_y \Phi \end{pmatrix} = \frac{GM}{r^3} \begin{pmatrix} x \\ y \end{pmatrix}$$

$$\hat{\vec{\alpha}}(b) = \frac{2GM}{c^2} \begin{pmatrix} x \\ y \end{pmatrix} \int_{-\infty}^{+\infty} \frac{dz}{(b^2 + z^2)^{3/2}}$$
$$= \frac{4GM}{c^2} \begin{pmatrix} x \\ y \end{pmatrix} \left[\frac{z}{b^2(b^2 + z^2)^{1/2}} \right]_0^{\infty} = \frac{4GM}{c^2b} \begin{pmatrix} \cos \phi \\ \sin \phi \end{pmatrix}$$
$$\begin{pmatrix} x \\ y \end{pmatrix} = b \begin{pmatrix} \cos \phi \\ \sin \phi \end{pmatrix}$$

Deflection angle for the general lens

For an ensamble of point masses:

$$\hat{\vec{\alpha}}(\vec{\xi}) = \sum_{i} \hat{\vec{\alpha}}_{i}(\vec{\xi} - \vec{\xi}_{i}) = \frac{4G}{c^{2}} \sum_{i} M_{i} \frac{\vec{\xi} - \vec{\xi}_{i}}{|\vec{\xi} - \vec{\xi}_{i}|^{2}}$$

For a more general three-dimensional distribution of matter, using the *thin screen approximation*:

$$\Sigma(\vec{\xi}) = \int \rho(\vec{\xi}, z) \, \mathrm{d}z$$

$$\vec{\hat{\alpha}}(\vec{\xi}) = \frac{4G}{c^2} \int \frac{(\vec{\xi} - \vec{\xi'}) \Sigma(\vec{\xi'})}{|\vec{\xi} - \vec{\xi'}|^2} \, \mathrm{d}^2 \xi'$$

Lensing potential

$$\hat{\Psi}(\vec{\theta}) = \frac{D_{\mathsf{LS}}}{D_{\mathsf{L}}D_{\mathsf{S}}} \frac{2}{c^2} \int \Phi(D_{\mathsf{L}}\vec{\theta}, z) \mathrm{d}z$$

$$\vec{\nabla}_{\theta}\hat{\psi} = D_{L}\vec{\nabla}_{\xi}\hat{\psi}$$
$$= \frac{2}{c^{2}}\frac{D_{LS}}{D_{S}}\int\vec{\nabla}_{\perp}\Phi dz$$
$$= \vec{\alpha}$$

$$\begin{split} \triangle \Phi &= 4\pi G\rho \\ \Sigma(\vec{\theta}) &= \frac{1}{4\pi G} \int_{-\infty}^{+\infty} \triangle \Phi \mathrm{d}z \\ \Sigma_{\mathrm{cr}} &= \frac{c^2}{4\pi G} \frac{D_{\mathrm{S}}}{D_{\mathrm{L}} D_{\mathrm{LS}}} \\ \kappa(\vec{\theta}) &= \frac{1}{c^2} \frac{D_{\mathrm{L}} D_{\mathrm{LS}}}{D_{\mathrm{S}}} \int_{-\infty}^{+\infty} \triangle \Phi \mathrm{d}z \\ \kappa(\theta) &= \frac{1}{2} \triangle_{\theta} \hat{\Psi} \end{split}$$

$$\vec{\alpha} = \vec{\nabla}_{\theta} \hat{\psi}$$

 \rightarrow

Some examples

Lens Model	$\psi(heta)$	lpha(heta)
Point mass	$\frac{D_{\rm ds}}{D_{\rm s}} \frac{4GM}{D_{\rm d}c^2} \ln \theta $	$rac{D_{ m ds}}{D_{ m s}} rac{4GM}{c^2 D_{ m d} heta }$
Singular isothermal sphere	$\frac{D_{\rm ds}}{D_{\rm s}} \frac{4\pi\sigma^2}{c^2} \theta $	$\frac{D_{\rm ds}}{D_{\rm s}} \frac{4\pi\sigma^2}{c^2}$
Softened isothermal sphere	$\frac{D_{\rm ds}}{D_{\rm s}} \frac{4\pi\sigma^2}{c^2} \left(\theta_{\rm c}^2 + \theta^2\right)^{1/2}$	$\frac{D_{\rm ds}}{D_{\rm s}} \frac{4\pi\sigma^2}{c^2} \frac{\theta}{(\theta_{\rm c}^2 + \theta^2)^{1/2}}$
Constant density sheet	$\frac{\kappa}{2} \theta^2$	$\kappa heta $

Lens equation

The lens equation links the true and the apparent positions of the source when it is lensed by a matter distribution.

$$\vec{\beta} = \vec{\theta} - \vec{\alpha}(\vec{\theta})$$

Point mass

$$\Psi(\theta) = \frac{D_{LS}}{D_S} \frac{4GM}{D_L c^2} \ln |\theta| \qquad \theta_E \equiv \sqrt{\frac{4GM}{c^2} \frac{D_{LS}}{D_L D_S}} \qquad \beta = \theta - \frac{\theta_E^2}{\theta}$$

multiple images and magnification!

$$heta_{\pm} = rac{1}{2} \, \left(eta \pm \sqrt{eta^2 + 4 heta_{
m E}^2}
ight)$$

Let's go back a few slides and consider again the concept of effective refraction index:

$$n = c/c' = rac{1}{1 + rac{2\Phi}{c^2}} pprox 1 - rac{2\Phi}{c^2}$$

This concept implies that, when photons travel along a ray, they will appear to travel slower than in vacuum and will take an extra-time to pass by a massive object:

$$\Delta t_{grav} = -\frac{2}{c^3} \int \Phi dz$$

In a cosmological context:

$$\Delta t_{grav} = -\frac{2}{c^3}(1+z_d)\int \Phi dz$$

$$\propto (1+z_d)\Psi$$

(Shapiro delay)

An additional contribution to the time delay comes from the extra geometrical path followed by light when it gets deflected towards the observer: $\hat{}$

$$\Delta s = \vec{\xi} \frac{\vec{\alpha}}{2}$$

Again, putting this in a cosmological context:

$$\Delta t_{geom} = (1+z_d) \frac{D_d D_{ds}}{2D_s c} \hat{\alpha}^2$$
$$\propto (1+z_d) (\vec{\theta} - \vec{\beta})^2$$

$$(ec{ heta}-ec{eta})-ec{
abla}_{ heta}\psi=0 \qquad \qquad ec{
abla}_{ heta}\left[rac{1}{2}(ec{ heta}-ec{eta})^2-\psi
ight]=0$$

$$(ec{ heta}-ec{eta})-ec{
abla}_{ heta}\psi=0 \qquad \quad ec{
abla}_{ heta}\left[rac{1}{2}(ec{ heta}-ec{eta})^2-\psi
ight]=0$$

$$t(\vec{\theta}) = \frac{(1+z_L)}{c} \frac{D_L D_S}{D_{LS}} \left[\frac{1}{2} (\vec{\theta} - \vec{\beta})^2 - \psi(\vec{\theta}) \right]$$
$$= t_{geom} + t_{grav}$$

$$\begin{split} (\vec{\theta} - \vec{\beta}) - \vec{\nabla}_{\theta} \psi &= 0 \qquad \vec{\nabla}_{\theta} \left[\frac{1}{2} (\vec{\theta} - \vec{\beta})^2 - \psi \right] = 0 \\ t(\vec{\theta}) &= \frac{(1 + z_L)}{c} \frac{D_L D_S}{D_{LS}} \left[\frac{1}{2} (\vec{\theta} - \vec{\beta})^2 - \psi(\vec{\theta}) \right] \end{split}$$
The solutions of the lens equation correspond to the stationary points of the time delay function (maxima, minima, saddle points)

$$\begin{aligned} (\vec{\theta} - \vec{\beta}) - \vec{\nabla}_{\theta} \psi &= 0 \qquad \vec{\nabla}_{\theta} \left[\frac{1}{2} (\vec{\theta} - \vec{\beta})^2 - \psi \right] = 0 \\ t(\vec{\theta}) &= \frac{(1 + z_L)}{c} \frac{D_L D_S}{D_{LS}} \left[\frac{1}{2} (\vec{\theta} - \vec{\beta})^2 - \psi(\vec{\theta}) \right] \\ &= t_{geom} + t_{grav} \end{aligned}$$
The solutions of the lens equation correspond to the stationary points of the time delay function (maxima, minima, saddle points)

Time delay surfaces

B1608+656

Koopmans et al. 2003

B1608+656

Koopmans et al. 2003

Lens mapping and distortions

Consider the limit of small deflections: in this case the lens equation can be written as:

$$\vec{\beta} = \vec{\theta} - \vec{\alpha}(\vec{\theta})$$
$$\vec{\beta} = \frac{\partial \vec{\beta}}{\partial \vec{\theta}} \vec{\theta} = A\vec{\theta}$$

$$\mathcal{A} \equiv \frac{\partial \vec{\beta}}{\partial \vec{\theta}} = \left(\delta_{ij} - \frac{\partial \alpha_i(\vec{\theta})}{\partial \theta_j}\right) = \left(\delta_{ij} - \frac{\partial^2 \psi(\vec{\theta})}{\partial \theta_i \partial \theta_j}\right)$$

Lens mapping and distortions

Critical lines and caustics

The inverse of the determinant Jacobian measures the magnification:

The magnification diverges where the eigenvalues of A vanish:

These two conditions define the critical lines

These are lines on the lens plane which are mapped on the caustics on the source plane

Examples

Tuesday, October 5, 2010

Convergence

$$\kappa(\vec{x}) \equiv \frac{\Sigma(\vec{x})}{\Sigma_{\rm cr}} \quad {\rm with} \quad \Sigma_{\rm cr} = \frac{c^2}{4\pi G} \frac{D_{\rm S}}{D_{\rm L} D_{\rm LS}}$$

Shear

Magnification

$$\mu \equiv \det M = \frac{1}{\det A} = \frac{1}{(1-\kappa)^2 - \gamma^2}$$

Critical lines and caustics

CL/CA vs source redshift

Tangential and radial distortions

If the source is circular, how is its elliptical image oriented?

Tangential and radial distortions

If the source is circular, how is its elliptical image oriented?

Tangential and radial distortions

If the source is circular, how is its elliptical image oriented?

Second order lensing

$$y_i \simeq \frac{\partial y_i}{\partial x_j} x_j + \frac{1}{2} \frac{\partial^2 y_i}{\partial x_j \partial x_k} x_j x_k$$

 $D_{ijk} = \frac{\partial^2 y_i}{\partial x_j \partial x_k} = \frac{\partial A_{ij}}{\partial x_k} \qquad y_i \simeq A_{ij} x_j + \frac{1}{2} D_{ijk} x_j x_k$

$$D_{ij1} = \begin{pmatrix} -2\gamma_{1,1} - \gamma_{2,2} & -\gamma_{2,1} \\ -\gamma_{2,1} & -\gamma_{2,2} \end{pmatrix} \qquad D_{ij2} = \begin{pmatrix} -\gamma_{2,1} & -\gamma_{2,2} \\ -\gamma_{2,2} & 2\gamma_{1,2} - \gamma_{2,1} \end{pmatrix}$$

$$\begin{array}{rcl} F = F_{1} + iF_{2} = (\gamma_{1,1} + \gamma_{2,2}) + i(\gamma_{2,1} - \gamma_{1,2}) \\ & \\ \hline \mathbf{First flexion} \end{array} \end{array} \begin{array}{rcl} G = G_{1} + iG_{2} = (\gamma_{1,1} - \gamma_{2,2}) + i(\gamma_{2,1} + \gamma_{1,2}) \\ & \\ \hline \mathbf{Second flexion} \end{array} \end{array} \\ \begin{array}{rcl} \gamma_{1,1} & = & \frac{1}{2}(\Psi_{111} - \Psi_{221}) & F_{1} & = & \frac{1}{2}(\Psi_{111} - \Psi_{221}) + \Psi_{122} = \frac{1}{2}(\Psi_{111} + \Psi_{221}) = \frac{\partial\kappa}{\partial x_{1}} \\ & \\ \gamma_{2,2} & = & \Psi_{122} & F_{2} & = & \frac{1}{2}(\Psi_{112} - \Psi_{222}) + \Psi_{121} = \frac{1}{2}(\Psi_{112} + \Psi_{222}) = \frac{\partial\kappa}{\partial x_{2}} \\ & \\ \gamma_{2,1} & = & \Psi_{121} & F_{2} & = & \frac{1}{2}(\Psi_{112} - \Psi_{222}) + \Psi_{121} = \frac{1}{2}(\Psi_{112} + \Psi_{222}) = \frac{\partial\kappa}{\partial x_{2}} \\ & \\ \hline F = \nabla \kappa \end{array}$$

Second order lensing

Image configurations

Note that multiple images exist only if the critical lines and the caustics exist! This condition defines a "strong" lens.

Conclusions

From the fact that masses perturb the space-time, we expect:

- 1. deflections (displacements)
- 2. increased multiplicity
- 3. time delays
- 4. distortions (radial, tangential)

MACS J1149.5+2223

