
Lensing by (the most) massive structures in the universe

• today: basics of lensing 

• tomorrow: how can we investigate the matter content of galaxy clusters using 
lensing (strong and weak)

• Wednesday: cosmology with galaxy clusters
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Lecture 1: a concise introduction to gravitational 
lensing

Massimo Meneghetti
INAF - Osservatorio Astronomico di Bologna
Dipartimento di Astronomia - Università di Bologna
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Gravitational lensing

• General relativity (GR): explains gravity in terms of assemblies of mass and 
energy curving the space-time

• photons feel gravity similarly to massive particles

• how can we formalize this?
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Fermat principle

n>1
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Fermat principle

Classical optics: Snell law

n>1
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Fermat principle

Classical optics: Snell law General relativity: deflection angle

n>1

Tuesday, October 5, 2010



Deflection angle for a point mass
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Deflection angle for the general lens

For an ensamble of point masses:

For a more general three-dimensional 
distribution of matter, using the thin 
screen approximation:
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Lensing potential
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Some examples
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Lens equation

The lens equation links the true 
and the apparent positions of the 
source when it is lensed by a 
matter distribution.
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Point mass

Ψ(θ) =
DLS

DS

4GM

DLc2
ln |θ|

multiple images and magnification!
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More complicated lenses: time delay

Let’s go back a few slides and consider 
again the concept of effective refraction 
index:

This concept implies that, when photons 
travel along a ray, they will appear to travel 
slower than in vacuum and will take an 
extra-time to pass by a massive object:

In a cosmological context:

(Shapiro delay)
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An additional contribution to the time delay 
comes from the extra geometrical path 
followed by light when it gets deflected 
towards the observer:  

∆s = �ξ
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2

Again, putting this in a cosmological 
context:
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More complicated lenses: time delays
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More complicated lenses: time delays
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More complicated lenses: time delays

t(�θ) =
(1 + zL)
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= tgeom + tgrav

The solutions of the lens 
equation correspond to 
the stationary points of 
the time delay function 
(maxima, minima, saddle 
points)
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Time delay surfaces
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B1608+656

Koopmans et al. 2003
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B1608+656

Koopmans et al. 2003
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Lens mapping and distortions

Consider the limit of 
small deflections: in this  
case the lens equation 
can be written as:

�β = �θ − �α(�θ)

�β =
∂�β

∂�θ
�θ = A�θ

Tuesday, October 5, 2010



Lens mapping and distortions

convergence

Shear

Eigenvalues

λt = 1− κ− γ

λr = 1− κ + γ
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Critical lines and caustics

The inverse of the determinant 
Jacobian measures the magnification:

The magnification diverges where the 
eigenvalues of A vanish:

These two conditions define the 
critical lines

These are lines on the lens plane 
which are mapped on the caustics on 
the source plane

Critical line

tangential 
eigenvectorradial 

eigenvector

λt = 1− κ− γ

λr = 1− κ + γ

⇒ detA = 0
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Examples
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Convergence
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Shear
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Magnification
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Critical lines and caustics
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CL/CA vs source redshift

z=1

z=2

z=4
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Tangential and radial distortions
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Radial 
Critical line
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If the source is circular, how is its elliptical image oriented?

x1

x2
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Second order lensing

First flexion Second flexion
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Second order lensing
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Image configurations

Note that multiple images exist only if the critical lines 
and the caustics exist!
This condition defines a “strong” lens.
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Conclusions

From the fact that masses perturb the space-time, we 
expect:
1. deflections (displacements)
2. increased multiplicity
3. time delays
4. distortions (radial, tangential)
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Now real observations...
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Now real observations...

MACS J1149.5+2223
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Now real observations...
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