「プロジェクト4」成果報告: サブミリ波による銀河探査 (サブミリ波・サブプロジェクト2)

RESCEU成果報告会 2010年8月28日 @高知

河野孝太郎

天文学教育研究センター ビッグバン宇宙国際研究センター (研究協力者)

kohno@ioa.s.u-tokyo.ac.jp

サブ・プロジェクト2:概要

- ・ (ミリ波・)サブミリ波での観測に基づく、
 - (主に)高赤方偏移銀河の形成進化過程の研究
 - → ダスト減光の影響のない「宇宙の星形成史」の探求
 - → それらをプローブとした、暗黒物質分布の探求
 - (そこに宿される)巨大ブラックホール形成進化過程の研究
- ・手法としては
 - (ミリ波)サブミリ波帯の連続波カメラによる撮像サーベイ → 形成途上の大質量銀河(サブミリ波銀河)の発見
 - ⇔ 多波長同定でプロジェクト3(銀河プロジェクト)との連携
 - (ミリ波)サブミリ波帯の(超)広帯域分光 →
 - (1) サブミリ波銀河の赤方偏移分布の測定
 - (2) エネルギー源の診断(埋もれたAGNの発見)
 - ⇔ サブプロジェクト1との連携(X線の星間物質の影響)

Why we observe high-z galaxies at millimeter/submillimeter wavelengths?

Because a large portion of the cosmic star formation is obscured by dust

More hidden star formation @higher redshift (>70% at z~1)

Based on the comparison of Lum. Functions at FUV with GALEX & IR with IRAS/Spitzer

Takeuchi, Buat, & Durgarella 2005, A&A, 440, L17

Cosmic star formation history

K correction as a function of λ

- Almost constant flux for $\sim 1 < z < \sim 10$ at 850um/1.1mm [mJy] due to strong negative K correction Flux density
- 1.4 GHz intensity drops very rapidly: $S(z) \sim (1+z)^{-(4+\alpha)}$
 - $-\alpha \sim 0.8$ (Condon 1992 ARAA, 30, 575)

Blain et al., 2002, Physics Reports, 369, 111-176

ASTE10m (Ezawa et al. 2008)

AzTEC Camera, 144 pix, 1.1mm, FOV=8', θ =28" (Wilson et al. 2008)

AzTEC-on-ASTE surveys of Submillimeter galaxies (SMGs)

Collaborators

- Kohno, K., <u>Ikarashi, S.,</u> Tsukagoshi, T., Inoue, H. (Univ. of Tokyo), Kawabe, R., <u>Tamura, Y., Hatsukade, B</u>., Oshima, T, Nakanishi, K., Iono, D., Ezawa, H., (NAOJ), Komugi, S. (ISAS/JAXA), Tanaka, K. (Keio Univ.), Tosaki, T., (Joetsu U. of Edu.) & ASTE team
- Cortes, J., (JAO), Bronfman, L. (Univ. of Chile)
- Wilson, G.W., (PI. of AzTEC; UMASS), Aretxaga, I., Hughes, D.H., (INAOE), Yun, M.S., Austermann, J., Scott, K.S. (UMASS), Perera, T. (Univ. of Chicago), & AzTEC team
- ADF-S/SXDS/SDF/SSA22 collaborations

ASTE

- 10 m dish@4860 m
- Science op. Oct. 2004~
- Joint operation with NAOJ and universities including Univ. of Tokyo (Kohno labo. & Yamamoto labo.) etc.
- Remote observations from Mitaka etc.

Atacama Submillimeter Telescope Experiment

- Main reflector: D=10m, 20 um (rms)
- Heterodyne spectroscopy : 350 GHz (CATS345), THz RX 490 GHz (ALAM Band-8 QM) + 8 GHz (max) width spectrometer
 Continuum imaging: 1100 um (AzTEC) *2007-2008 1100/850/450 um *under development
 Remote observations from Tokyo/Nobeyama
 Joint project among NAOJ and Universities

http://www.nro.nao.ac.jp/~aste/

The ASTE site: cluster of telescopes!

- Located at alt. 4,860 m in the Atacama desert in Chile
- Many mm/submm/Infrared facilities are coming!

This is a very dry site but ...

AzTEC-ASTE 1.1 mm deep surveys

• wide (~1.6 deg²) & deep ($1\sigma \sim 0.4 - 1.2 \text{ mJy} \Leftrightarrow \text{ULIRGs } @z>1$) surveys of blank fields: yielding >750 robust detections

Field name	Survey area (30-50% coverage)	Noise level (1 sigma)	Num. of sources (S/N > 3.5)
SXDF	960 arcmin ²	0.5 - 0.9 mJy	174
SSA22	810 arcmin ²	0.6 – 1.2 mJy	113
ADF-S	970 arcmin ²	0.4 - 0.8 mJy	191
SDF	210 arcmin ²	0.7 – 1.0 mJy	25
SXDF z=5.7 clump	300 arcmin ²	~ 0.8 mJy	30
COSMOS	2700 arcmin ²	~ 1.1 mJy	193
GOODS-S	270 arcmin ²	0.5 - 0.7 mJy	48

- Biased regions survey: ~1 deg², >680 detections
 - High-z radio galaxies, X-ray and optically selected proto-clusters; ~160 arcmin² x ~40 fields:

>1400 detections in total, ~x3 of the known (published) SMGs

AzTEC/ASTE 1.1mm map of ADF-S

Hatsukade et al., 2010, MNRAS, submitted

 $\int 1\sigma < 0.6 \text{ mJy}$ 1\sigma < 0.8 mJy (970 arcmin²)

0.5 deg

12

10

8

6

2

AzTEC/ASTE 1.1mm map of ADF-S

Constraints on redshifts of AzTEC/ASTE sources in ADF-S

- 90um/1.1mm flux ratio Hatsukade et al., 2010, MNRAS, submitted
 - \rightarrow most of the AzTEC sources: z > 1
 - AKARI 90um sources : low-z, AzTEC 1.1mm sources: high-z
- L(FIR) ~ (3-14) x 10^{12} Lo, SFR ~ 500-2400 Mo/yr

Distribution of all/bright SMGs in ADF-S

• Distribution of bright SMGs deviates from random distribution!

Clustering of AzTEC Sources

Field	Source	N source	Amplitude	
ADF-S	all	174	0.82 ± 3.0	
	>3mJy	64	14 ± 5.8	
SXDF	all	191	0.50 ± 2.0	
	>3mJy	70	3.1 ± 5.6	
Combine	all	365	0.91 ± 2.1	
	>3mJy	134	9.0 ± 4.0	

Hatsukade 2010, PhD

- Evidence for clustering
 - Bright sources (L(FIR) ~ 10¹³) are more strongly clustered
 - DH mass: 10¹³⁻¹⁴ Mo
- Field-to-field variance

 ADF-S > SXDF
 cf. Hersherl

One of the hot issues: Increasing the number of z>4 SMGs?

The highest redshift SMG to date (z=5.3)

FIG. 2.— Left: EVLA/PdBI CO($J=2\rightarrow1$) (top), CO($J=5\rightarrow4$) (middle) and CO($J=6\rightarrow5$) (bottom) spectra of AzTEC-3 at 6/10/10 MHz (49/33/27 km s⁻¹) resolution (histograms), along with Gaussian fits to the line emission (black curves). The velocity scale is relative to the source's redshift of $z=5.2979\pm0.0004$, as measured from the molecular line emission. Right: Same, but showing the PdBI data recorded with the WideX correlator (CO $J=6\rightarrow5$ is re-binned to 20 MHz).

Properties of z=5.3 SMG

- $L_{FIR} = (1.7 \pm 0.8) \times 10^{13} \text{ Lo or SFR} \sim 1800 \text{ Mo/yr}$
- Mstar = $(1.0 \pm 0.2) \times 10^{10} \text{ Mo}$
- CO source size: < 1" or <8 kpc
- L'co = $6.6 \times 10^{10} \text{ K km/s pc}^2$

```
cf. Mstar ~ 10<sup>11</sup> Mo
In SXDF860.6
Hatsukade 2010,
ApJ, 711, 974
```

- → SFE = L_{FIR}/L 'co = 260 Lo/(K km/s pc²)
 - Comparable to typical z>2 SMGs (Greve et al. 2005) and quasar host galaxies (Riechers et al. 2006)
- Mgas = 5.3×10^{10} Mo \rightarrow Mgas/Mstar ~ 5 (!)

- What is the origin of dust at z=5.3 !?

• t_SF (duration) \sim 30 Myr \rightarrow Mstar can be x6

Further z>4 SMGs known

- z=4.76, LESS J0332-2756, by LABOCA/APEX
 Coppin et al. 2009, MNRAS, 395, 1905
- z=4.54, COSMOSJ1000+0234 by AzTEC/JCMT
 - Capak et al. 2008, ApJ, 681, L53 for optical spec.
 - Schinnerer et al. 2008, ApJ, 689, L5 for CO spec.
- z=4.044, SMM J1635+6613@A2218 by SCUBA/JCMT
 - Knudsen et al. 2010, ApJ, 709, 210
- z=4.042, GOODS-N850.5, by SCUBA/JCMT

10 5 0 -5 -10 -

10 5 0 -5 -10

IRAC (middle) 24 um + 870um contour (right)

z=4.76 SMG:

Optical (left)

Too many high-z SMGs already !?

- Known number of the high-z (z>4) SMGs are already consistent to a L-CDM model prediction !?
- Number of high-z
 (z>4) SMGs can
 put tight constraint
 on models

Coppin et al. 2009, MNRAS, 395, 1905

Further evidence for the presence of high-z SMGs

- Infrared faint SMGs
 - Reports on SMGs without K-band counterpart
 - -~1/4 of the AzTEC/ASTE SMGs in SXDF seems Kband faint, i.e., another high-z SMG candidates!
- Radio faint SMGs (see Younger et al. 2007)
 - 5 of 7 bright SMGs are radio faint (i.e., high z)
 - ~1/2 of the AzTEC/ASTE SMGs in SXDF have no radio counterpart (less than ~40 uJy)
- Flat 850/1100um spectrum SMGs
 - Higher-z \rightarrow flatter spectrum (small flux ratio)

AzTEC/ASTE 1.1 mm image of SXDF

- $0.4 \sim 1 \text{ mJy} (1\sigma)$
- Detected SMGs: ~230

Ikarashi et al.

in prep.

Mm/Submm deep surveys of SXDF

Camera/Telescope	Area	Noise level (1 sigma, mJy)	Num. of Sources
SCUBA/JCMT	406 arcmin2	~2 mJy @850um	60 (S/N > 3.4)
AzTEC/JCMT	1330 arcmin2	1.0 – 1.7 mJy@1100um	28 (S/N > 3.7)
AzTEC/ASTE	~1000 arcmin2	0.5 – 1 mJy @1100um	226(S/N > 3.5)

Radio/mm/submm color-color diag.

Ikarashi et al. in prep

 $850\mu m/1100\mu m$

High-z SMG candidates in SXDF

- "Flat spectrum" SMGs: 850um/1100um flux ratio < 1.8 (i.e., flatter than a typical slope)
 - Combined analysis of SHADES and AzTEC-ASTE sources

10

- $-\sim 20$ % of the total SCUBA sources are "flat" (<1.8)
- Many of them are 20cm faint

Power source of SMGs: Mm/submm spectroscopy as a new power diagnostic for dusty IR galaxies

Bright SMGs in SSA22 by AzTEC/ASTE

Clustering of SMGs toward the biased region traced by LAEs

Tracing the heart of massive dark halo

- Structure formation w/ Λ cold dark matter model
 - young, less massive galaxies (LAEs) are falling into the heart of the massive dark halo
 - Massive starburst galaxies (SMGs) are grown there

Ks > 24.9 mag(AB),Multi-wavelengths ID of 2σ upper limit the brightest source in SSA 22

SMA 860 μ m

Color : Spitzer/IRAC Color : Subaru/MOIRCS Contour : VLA 20cm

(Uchimoto et al., 2008) Contour : SMA 860 μ m

- very "red" in MIR(IRAC) bands !
- K-drop out !?

Y. Tamura et al. 2010, submitted

- SED at $\lambda > 5\mu m$ is consistent with that at z=3.1
- Detection of a deeply obscured ($N_H \sim 10^{24} \text{cm}^{-2}$) hard X-ray source \rightarrow proto-quasar phase? Growing SMBH?
- SED \rightarrow Mstar ~7x10¹⁰ Mo \rightarrow growing bulge?

Optical/infrared properties of SMGs

- Optically faint/often invisible
- Very red color in infrared (NIR/Spitzer MIR bands also)

FIG. 2.— Multi-wavelength images of SXDF 850.6 with the SMA contours (2, 3, 4, and 5σ). The size of each image is $10'' \times 10''$ and north is up. From left to right: rgb image of MOSAIC II/u, SprimeCam/B, and V; rgb image of SprimeCam/R, i', and z'; rgb image of WFCAM/J, H, and K; rgb image of IRAC/ch1, 2, 3, and 4; MIPS 24 μ m; VLA 21 cm.

SXDF 850.6, SMA contours on optical/infrared/radio images Hatsukade et al. 2010, ApJ, 711, 974

Millimeter-wave molecular spectroscopy as a new diagnostic of nuclear energy source

AGN:

- HCN/HCO⁺>2-3
- CN(J=3/2-1/2) $/(J=1/2-1/2) \sim 1?$
- → XDR chemistry?

MIR pumping? Maser?

Starburst:

• HCN/HCO⁺ ~1

•
$$CN(J=3/2^{-1}/2)$$

 $/(J=1/2^{-1}/2) \sim 0.3$

→ PDR chemistry?

Nobeyama Millimeter Array Kohno et al. 2001, 2005, Kohno et al. 2008, ApSS, 313, 279

Summary (1)

- Project4, subproject 2: mm/submm studies of formation and evolution processes of massive galaxies → cosmic star formation history, underlying DM, proto-quasar/super massive BH
 - Wide field mm/submm deep surveys → uncovering new SMGs ⇔ multiwavelengths follow up [project 3]
 - Wide band mm/submm spectroscopy → redshift, power source diagnostic ⇔ physical/chemical conditions of ISM [subproject1]

Summary (2): Recent results

- Unprecedentedly wide and deep 1.1 mm survey
 - Blnak fields including Subaru-XMM-Newton Deep Field, Subaru Deep Field, Akari Deep Field South, SSA 22, GOODS-S, COSMOS, etc.
 - Yielding ~1400 new detections of SMGs → statistical studies are now feasible (e.g., clustering)
 - Long wavelengths survey → likely to contain a lot of high-z (z>4) SMG candidates ! Efforts to make redshift search of them are on-going
 - Discovery of proto-quasar-like SMG at the bottom of the potential in SSA22
 - New diagnostic of power source in dusty galaxies