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1. How to test modified gravity proposals for DE
2. Bayesian vs. Frequentist approach to statistics
3. Markov chain Monte Carlo (MCMC)
4. Fisher information matrix

In this Lecture:



Review of facts about Dark Energy

•DE dominates universe’s budget, but not overwhelmingly (ΩDE 
≈ 0.75)

•DE makes distant SNe dimmer (or more distant) than expected

•DE has strongly negative pressure (p ≈ -ρ, w ≈ −1)

•DE domination ⇒ suppressed growth of structure (so, had the 
universe always been DE dominated, there would be no galaxies in the sky!)

•DE is spatially smooth (or nearly so)

•Best measurements of DE obtained with a variety of probes at 
z ≤ 2

•Expansion and growth history measurements are crucial; the 
former described by w(z), and the latter by g(z)



What if gravity 
deviates from GR?

H2
− F (H) =

8πG

3
ρ, or H2 =

8πG

3

(

ρ +
3F (H)

8πG

)

For example:

Modified gravity Dark energy

Notice: there is no way to distinguish these two 
possibilities  just by measuring H(z)!



•In standard GR, H(z) determines distances and growth of 
structure

•So check if this is true by measuring separately

δ̈ + 2H δ̇ − 4πρMδ = 0

Distances
(as known as kinematic probes)

(a.k.a. 0th order cosmology)

Growth
(a.k.a. dynamical probes)

(a.k.a. 1st order cosmology)

How to distinguish between DE and MG

Probed by SN Ia, BAO, CMB,
weak lensing, cluster abundance

Probed by galaxy clustering, 
weak lensing, cluster abundance



example: DGP linear growth

Lue, Scoccimarro & Starkman;  Koyama & Maartens;  Sawicki, Song & Hu
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Strategy I: distance (z), growth(z) separately

Knox, Song & Tyson 2005

Measure 
r(z), g(z),

see if they
agree
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Measure w0 and w1=wa for growth and distance, see if they agree

Strategy II: Measure (Ωm, w0, wa) 
separately for growth and distance



Wang, Hui, May & Haiman, 2007

Nice work, but current constraints are weak

Strategy II.5: Measure w separately;
example from real data
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Strategy III: “Minimalist Modified Gravity”

g(a) ≡
δ

a
= exp

[
∫ a

0

d ln a[ΩM (a)γ
− 1]

]

Excellent fit to standard DE cosmology with

γ = 0.55 + 0.05[1 + w(z = 1)]

Huterer & Linder, 2007

• Gamma is a new parameter - the growth index - and we should measure 
it!

• E.g. fits DGP with value different from GR by Δγ=0.13

• Strategy: measure γ, see if it differs from ~0.55 or not

Linder 2005



Price of ignorance of MG
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What about fluctuations in DE?

ds2 = − (1 + 2Ψ) dt2 + a2(t) (1− 2Φ)
[
dχ2 + r2(dθ2 + sin2 θdφ2)

]

- Lensing probes ϕ+ψ
- velocity (and dynamical measure) probe ψ

Measuring ψ and ϕ separately 
also tests models of modified gravity

e.g. Jain & Zhang 2007



Principal components of MG

Zhao, Pogosian, Silverstri, Zylberberg,  arXiv:0905.1326

Φ
Ψ

= γ(k, a), k2Ψ = −µ(k, a)4πGa2ρ∆



Bayesian probability interprets the concept of probability as ’a 
measure of a state of knowledge, and not as a frequency. 

One of the crucial features of the Bayesian view is that a 
probability can be assigned to a hypothesis, which is not 
possible under the frequentist view, where a hypothesis can 
only be rejected or not rejected. 

Bayesian statistics



P (M |D) =
P (D|M) P (M)

P (D)

Bayes’ theorem 
(D=data, M=model)

Posterior 
probability:

model given data

Likelihood
(data given model)

Prior probability
(of models)

Probability of data
(usually constant)



Say we have measurements of H0=(72±8) kms/Mpc.
What would the two statisticians say?

•The posterior distribution for H0 has 68% of its integral 
between 64 and 80 km/s/Mpc. 
•The posterior can be used as a prior on a new application 
of Bayes' theorem.

1. Bayesian:

Bayesian vs. Frequentist: Example 1



Say we have measurements of H0=(72±8) kms/Mpc.
What would the two statisticians say?

•Performing the same procedure will cover the real value of 
H0 within the limits 68% of the time. 
•But how do I repeat the same procedure (generate a new 
H_0 out of the underlying model) if I only have one 
Universe?

2. Frequentist:

Bayesian vs. Frequentist: Example 1



Say I would like to measure ΩM and ΩΛ  from SN data. 
What would the two statisticians do?

•Take some prior (say, uniform prior in both ΩM and ΩΛ ). 

• Then, for each model M=(ΩM, ΩΛ) compute the likelihood 
of the data, P(D|M) using, for example, the χ2 statistics
•Obtain the posterior probability on the two parameters   
using Bayes' theorem: 

1. Bayesian:

P(M|D) ∝ P(D|M) P(M)

Bayesian vs. Frequentist: Example 2



Say I would like to measure ΩM and ΩΛ  from SN data. 
What would the two statisticians do?

•Calibrate your statistic: for each model within the range you 
are exploring, generate  many realizations of data with that 
underlying model. Each realization of the data (points, and 
errors) gives you a χ2. 

•Histogram χ2 to calibrate the likelihood. 

•Now calculate the χ2 statistic for the real data, assuming the 
same model, and compare to the histogram - this will give you 
a (relative) likelihood for that model. 

•Repeat for each model M=(ΩM, ΩΛ)

2. Frequentist:
Feldman & Cousins, PRD, 1997

Bayesian vs. Frequentist: Example 2



Statistics: philosophy 

•When data are informative, Bayesian and frequentist 
approach will give very similar results

•But when data are ‘weak’, the two will generally differ

•No ‘right answer’ as to which one is better

•Given that we have 1 universe and cannot get arbitrary 
amount of data, Bayesian approach seems more 
appropriate

•In particular, Bayesian enables answering questions 
about model selection (e.g. is a dark energy model with w(z) a 
better fit to the data than w=const) A

•Also Bayesian enables easily adding new information 
(new data)

e.g. Trotta, arXiv:0804:4089



Markov chain Monte Carlo (MCMC)

•Say we’d like to constraint cosmological parameters 
using some CMB or LSS data

•We have ~10 parameters; say we consider 20 values in 
each parameter to get smooth contours

•→ 2010 (∼ 1013) parameter combinations

•CAMB and WMAP likelihood take seconds to run per 
model → a total of 100 million years CPU time

•A better strategy of the likelihood exploration is needed!



Markov chain Monte Carlo (MCMC)

•MCMC: A method invented at Los Alamos lab in the 
1950s by physicists

•Instead of mapping out the likelihood, try sampling 
from the likelihood

• Metropolis algorithm: 

•given the parameter set at some step t, xt, draw the next 
step xt+1 from some given proposal density Q(xt+1| xt )

•Now draw a random number α = U[0, 1]

•If α < P(xt+1)/ P(xt ), xt → xt+1 *

•If α < P(xt+1)/ P(xt ), xt → xt   (and repeat)

*Note: if P(xt+1) > P(xt ), you always move to the proposed parameter value



Fisher Information Matrix

Fij =
〈
−∂2 lnL

∂pi∂pj

〉

Cramér-Rao inequality: 
best errors you can achieve in cosmological parameters are

σ(pi) ≥






√
(F−1)ii (marginalized)

1/
√

Fii (unmarginalized)

Fisher matrix can be rewritten as 
(Tegmark Taylor & Heavens 1997)

Fij =
1
2
Tr[C−1C,iC

−1C,j ] + d̄T
,i C−1d̄,j

datacovariance 
of data

(minus) Hessian 
of likelihood



Fisher Matrix: examples

F SNe
ij =

NSNe∑

n=1

1
σ2

m

∂m(zn)
∂pi

∂m(zn)
∂pj

SN Ia: observable is magnitude m(z)

Cluster counts: observable is O(z) (say X-ray or SZ flux etc)

F clus
ij =

Q∑

k=1

Nk

σO(zk)2
∂O(zk)

∂θi

∂O(zk)
∂θj

Weak lensing power spectrum: observable is tomographic 
power spectrum Cab(l)

FWL
ij =

∑

!

∂C
∂pi

Cov−1 ∂C
∂pj



p1

p2

2σ(p1)

2σ(p2)

68% contour

F11p
2
1 + 2F12p1p2 + F22p

2
2 = χ2

Equation of Fisher ellipse:
χ2=2.3 (68%)
χ2=6.1 (95%)



Fisher Matrix: facts

•Extremely useful tool for forecasting errors (and also 
Figures of Merit, in defining PCs, in the quadratic estimator method, etc)

•Easy to calculate: - only need one calculation of the 
observables for the fiducial model, and its derivatives wrt 
cosmological parameters

•Assumes that the likelihood (in parameters) is 
Gaussian: good approximation near the peak of likelihood (i.e. 
when the parameter errors are small)



Marginalizing over parameters with Fisher

1. Calculate the full N × N Fisher matrix F
2. Invert it to get F-1

3. Take the desired M × M subset of F-1, and call it G-1; note 
that this matrix is M dimensional
4. Invert G-1 to get G

And voilà -the matrix G is the projected Fisher matrix onto the
M-dimensional space

Say you have N, cosmological parameters. 
How do you marginalize over N-M of them to be left with a

desired joint constraints on M parameters?



Bias in parameters using Fisher matrix
Say you have biases (say, systematic errors) in observables. 

How do you calculate the resulting bias 
in cosmological parameters pi?

Easily! Can derive formula from first principles.

Weak lensing example:

SN Ia example:

δpi = F−1
ij

∑

!

[
Cκ

α(")− C̄κ
α(")

]
Cov−1

[
C̄κ

α("), C̄κ
β (")

] ∂C̄κ
β (")

∂pj

δpi = F−1
ij

∑

n

1
σ2

m

[m(zn)− m̄(zn)]
∂m̄(zn)

∂pj


