

Galaxy Clustering & Observational Methods

Will Percival ICG, University of Portsmouth, UK

Reason for my nonarrival at Hakone school 2 years ago was his early arrival

Lecture outline

- Introduction to statistics
 - Correlation function
 - Power spectrum
- Information from power spectrum shape
 - Matter density
 - Baryon Acoustic Oscillations
 - Neutrino mass
 - Inflation perturbation power spectrum
- Information from geometry
 - Galaxy clustering as a standard ruler
 - BAO and the Alcock-Paczynski effect
 - non-linear power spectrum shifts
- Information from structure growth
 - linear growth
 - peculiar velocities
 - redshift-space distortions

Lecture outline

- Introduction to statistics
 - Correlation function
 - Power spectrum
- Information from power spectrum shape
 - Matter density
 - Baryon Acoustic Oscillations
 - Neutrino mass
 - Inflation perturbation power spectrum
- Information from geometry
 - Galaxy clustering as a standard ruler
 - -BAO and the Alcock-Paczynski effect
 - non-linear power spectrum shifts
- Information from structure growth
 - linear growth
 - peculiar velocities
 - redshift-space distortions

Perturbation statistics: correlation function

Perturbation statistics: power spectrum

definition of power spectrum $\langle \delta(\mathbf{k_1}) \delta(\mathbf{k_2}) \rangle = (2\pi)^3 \delta_D(\mathbf{k_1} - \mathbf{k_2}) P(k_1)$

power spectrum is the Fourier analogue of the correlation function

$$P(k) \equiv \int \xi(r) e^{i\mathbf{k}\cdot\mathbf{r}} d^3r$$
$$\xi(r) = \int P(k) e^{-i\mathbf{k}\cdot\mathbf{r}} \frac{d^3k}{(2\pi)^3}$$

sometimes written in dimensionless form $\Delta^2(k) = \frac{k^3}{2\pi^2} P(k)$

Because the central limit theorem implies that a density distribution is asymptotically Gaussian in the limit where the density results from the average of many independent processes; and a Gaussian is completely characterised by its mean (overdensity=0) and variance (given by either the correlation function or the power spectrum)

Do 2-pt statistics tell us everything?

Same 2pt, different 3pt

The power spectrum and correlation function contain the same information; accurate measurement of each give the same constraints on cosmological models.

Both power spectrum and correlation function can be measured relatively easily (and with amazing complexity)

The power spectrum has the advantage that different modes are uncorrelated (as a consequence of statistical homogeneity).

Models tend to focus on the power spectrum, so it is common for observations to do the same ...

Lecture outline

- Introduction to statistics
 - Correlation function
 - Power spectrum
- Information from power spectrum shape
 - Matter density
 - Baryon Acoustic Oscillations
 - Neutrino mass
 - Inflation perturbation power spectrum
- Information from geometry
 - Galaxy clustering as a standard ruler
 - -BAO and the Alcock-Paczynski effect
 - non-linear power spectrum shifts
- Information from structure growth
 - linear growth
 - peculiar velocities
 - redshift-space distortions

Why is there structure?

Inflation (a period of rapid growth of the early Universe driven by a scalar field) was postulated to solve some serious problems with "standard" cosmology:

• why do causally disconnected regions appear to have the same properties? – they were connected in the past

• why is the energy density of the Universe close to critical density? – driven there by inflation

•what are the seeds of present-day structure? - Quantum fluctuations in the matter density are increased to significant levels

 $P(k) = k^n$ $(n \approx 1)$

Matter P(k) depends on inflation

$$P(k) = k^n$$
$$(n \approx 1)$$

Jeans length

The transfer function depends on the composition of the matter (CDM, baryons, neutrinos, etc.)

An important scale is the Jeans Length which is the scale of fluctuation where pressure support equals gravitational collapse,

$$\lambda_J = \frac{C_s}{\sqrt{G\rho}}$$

where c_s is the sound speed of the material, and ρ is its density.

"F=ma" for perturbation growth $\vec{\delta} = (\text{gravity} - \text{pressure})\delta$ depends on Jeans scale

in radiation dominated Universe, pressure support means that small perturbations cannot collapse (large Jeans scale). Jeans scale changes with time, leading to smooth turn-over of matter power spectrum. Cut-off dependent on matter density times the Hubble parameter Ω_m h.

The power spectrum turn-over

Amplitude of effect depends on matter density – how long before matter-radiation equality

The effect of neutrinos

The existence of massive neutrinos can also introduce a suppression of T(k) on small scales relative to their Jeans length. Degenerate with the suppression caused by radiation epoch. Position depend on neutrino-mass equality scale.

Baryon Acoustic Oscillations (BAO)

(images from Martin White)

To first approximation, BAO wavelength is determined by the comoving sound horizon at recombination

$$k_{
m bao} = 2\pi/s$$

 $s = rac{1}{H_0\Omega_m^{1/2}} \int_0^{a_*} da rac{c_s}{(a+a_{
m eq})^{1/2}}$

comoving sound horizon ~110h⁻¹Mpc, BAO wavelength 0.06hMpc⁻¹

Relationship between CMB and LSS power spectra Portsmouth

The shape of the power spectrum

credit: VIRGO consortium

Lecture outline

- Introduction to statistics
 - Correlation function
 - Power spectrum
- Information from power spectrum shape
 - Matter density
 - Baryon Acoustic Oscillations
 - Neutrino mass
 - Inflation perturbation power spectrum
- Information from geometry
 - Galaxy clustering as a standard ruler
 - BAO and the Alcock-Paczynski effect
 - non-linear power spectrum shifts
- Information from structure growth
 - linear growth
 - peculiar velocities
 - redshift-space distortions

If we observed the comoving power spectrum directly, we would not constrain evolution (except through linear growth – see later)

However, we measure galaxy redshifts and angles and infer distances

$$d_{\rm comov}(a) = \int_{t(a)}^{t_0} \frac{c \, dt'}{a(t')} = \int_a^1 \frac{c \, da'}{a'^2 H(a')}$$

The power spectrum as a standard ruler

"rings of power"

BAO as a standard ruler

Changes in cosmological model 0.14alter measured BAO scale (Δd_{comov}) by: 0.12 $\frac{c}{H(z)}\Delta z$ Radial direction 0.10(Mpc⁻¹) (evolution of Universe) 0.08k.... Angular direction 0.06 $(1+z)D_A\Delta\theta$ 0.04 (line of sight) 0.02 This is just the Alcock-Paczinski effect for small-scale 0.08 0.10 0.060.12 0.14 0.02 0.04perturbations k_⊥ (Mpc⁻¹) Gives rise to the

Hu & Haiman 2003, astro-ph/0306053

BAO as a standard ruler

Changes in cosmological model alter measured BAO scale (Δd_{comov}) by:

Radial direction

$$rac{c}{H(z)}\Delta z$$

(evolution of Universe)

Angular direction

$$(1+z)D_A\Delta\theta$$

(line of sight)

If we are considering radial and angular directions using randomly orientated galaxy pairs, we constrain (to 1st order)

$$D_V = \left[(1+z)^2 D_A^2(z) \frac{cz}{H(z)} \right]^{1/3}$$

BAO position (in a redshift slice) therefore constrains some multiple of $\frac{r_s}{D_V}$ 2 0.00 $\Omega_{\rm h}/\Omega_{\rm m}$ = = 0.25 $\Delta^{2}(k)$ = 0.50spectrum 0.1 0.01 power Varying r_s/D_v 10^{-3} 0.01 0.1 wave number $k / h Mpc^{-1}$

Why BAO are a good ruler

Linear BAO

$$B_{\rm lin} = \frac{P(k)_{\rm lin}}{\bar{P}(k)_{\rm lin}}$$

Observed power

$$B_{\rm obs} = \frac{P(k)_{\rm obs}}{\bar{P}(k)_{\rm obs}} = g(k)B_{\rm lin} + [1 - g(k)]$$

Observed BAO

$$P(k)_{\text{obs}} = b^2(k)P(k)_{\text{lin}} + P(k)_{\text{extra}}$$

(no change in position)

Damping factor

$$g(k) = \frac{b^2(k)\bar{P}(k)_{\rm lin}}{\bar{P}(k)_{\rm obs}}$$

Need sharp features in P(k) or correlations to change BAO position

Eisenstein, Seo & White 2006, astro-ph/0604361 Percival et al. 2007, astro-ph/0705.3323

Can make a perturbative treatment of (CDM+baryon) fluid system

$$\delta = \delta^{(1)} + \delta^{(2)} + \delta^{(3)} + \cdots$$
 revise this term
 $P_{\text{lin}}(k) = k^n T^2(k) D^2(a)^{\mu}$

(e.g., Suto & Sasaki 1991)

New approach to 2nd order evolution

Based on field-theoretical approach,

Standard PT calculation can be improved by re-summing an

infinite class of perturbative corrections at all orders.

"Renormalized Perturbation Theory (RPT)"

Crocce & Scoccimarro (2006ab,2007)

Related works: McDonald, Matarrese & Pietroni, Valageas, Matsubara ('07)

Going to 2nd order ...

At second order we get mode mixing, which causes shifts in the power spectrum BAO peaks

Shifts are <1%, and can be calculated

Not important for current data, but need to be included for future analyses

Crocce & Scoccimarro 2007; astro-ph/0704.2783

Using the full power spectrum as a ruler

Nishimichi et al. 2008; astro-ph/0810.0813

Lecture outline

- Introduction to statistics
 - Correlation function
 - Power spectrum
- Information from power spectrum shape
 - Matter density
 - Baryon Acoustic Oscillations
 - Neutrino mass
 - Inflation perturbation power spectrum
- Information from geometry
 - Galaxy clustering as a standard ruler
 - -BAO and the Alcock-Paczynski effect
 - non-linear power spectrum shifts
- Information from structure growth
 - linear growth
 - peculiar velocities
 - redshift-space distortions

Spherical perturbation leading to linear growth

cosmology equation

$$\frac{1}{a}\frac{d^2a}{dt^2} = -\frac{H_0^2}{2} \left[\Omega_M a^{-3} + [1+3w(a)]\Omega_X a^{f(a)}\right]$$
$$\frac{1}{a_p}\frac{d^2a_p}{dt^2} = -\frac{H_0^2}{2} \left[\Omega_M a_p^{-3} + [1+3w(a)]\Omega_X a^{f(a)}\right]$$

Consider homogeneous spherical perturbation – evolution is "same" as "mini-universe"

homogeneous dark energy means that this term depends on scale factor of background

"perfectly" clustering dark energy – replace a with a_p

Spherical perturbation leading to linear growth

cosmology equation

$$\frac{1}{a}\frac{d^2a}{dt^2} = -\frac{H_0^2}{2} \left[\Omega_M a^{-3} + [1+3w(a)]\Omega_X a^{f(a)}\right]$$
$$\frac{1}{a_p}\frac{d^2a_p}{dt^2} = -\frac{H_0^2}{2} \left[\Omega_M a_p^{-3} + [1+3w(a)]\Omega_X a^{f(a)}\right]$$

definition of
$$\delta$$

$$\delta = \frac{a^3}{a_p^3} - 1$$

to first order in perturbation radius (linear approximation)

$$a_p = a(1-\delta/3)$$

gives

$$\frac{d^2\delta}{dt^2} + \frac{2}{a}\frac{da}{dt}\frac{d\delta}{dt} - \frac{3}{2}H_0^2\Omega_m a^{-3}\delta = 0$$

can also be derived using the Jeans equation

only has this form if the dark energy does not cluster – derivation of equation relies on cancellation in dark energy terms in perturbation and background

$$\frac{d^2\delta}{dt^2} + \frac{2}{a}\frac{da}{dt}\frac{d\delta}{dt} - \frac{3}{2}H_0^2\Omega_m a^{-3}\delta = 0$$

For flat matter dominated model, this has solution $\delta \propto a$

Remember that the gravitational potential and the overdensity are related by Poisson's equation

$$\nabla^2 \Phi = 4\pi G \bar{\rho} \delta \qquad -\frac{k^2}{a^2} \tilde{\Phi} \propto \frac{\tilde{\delta}}{a^3}$$

Then the potential is constant: there is a delicate balance between structure growth and expansion

Not true if dark energy or neutrinos

$$\frac{d^2\delta}{dt^2} + \frac{2}{a}\frac{da}{dt}\frac{d\delta}{dt} - \frac{3}{2}H_0^2\Omega_m a^{-3}\delta = 0$$

For general models, denote linear growth parameter (solution to this differential equation)

$$\delta = D(t)$$

For lambda models, can use the approximation of Carroll, Press & Turner (1992)

$$D(a) \simeq \frac{5\Omega_M(a)a}{2} \left[\Omega_M(a)^{4/7} - \Omega_\Lambda(a) + \left(1 + \frac{\Omega_M(a)}{2}\right) \left(1 + \frac{\Omega_\Lambda(a)}{70}\right) \right]^{-1}$$

For general dark energy models, need to solve the differential equation numerically

Linear vs Non-linear behaviour

P(k) calculated from Smith et al. 2003, MNRAS, 341,1311 fitting formulae

Peculiar velocities

All of structure growth happens because of peculiar velocities

Initially distribution of matter is approximately homogeneous (δ is small)

Final distribution is clustered

Consider galaxy with true spatial position x(t)=a(t)r(t), then differentiating twice and splitting the acceleration $d^2x/dt^2=g_0+g$ into expansion (g_0) and peculiar (g) components, gives that the peculiar velocity u(t) defined by a(t)u(t)=dx/dt satisfies

$$\dot{\mathbf{u}} + \frac{2\dot{a}}{a}\mathbf{u} = -\mathbf{g}$$

The peculiar gravitational acceleration is $\mathbf{g} =
abla \Phi / a$

So, for linearly evolving potential, u and g are in same direction

In conformal units, the continuity and Poisson equations are

$$\frac{\partial \delta}{\partial \tau} + \nabla \cdot \left[(1+\delta) \mathbf{u} \right] \simeq \frac{\partial \delta}{\partial \tau} + \nabla \cdot \mathbf{u} = 0 \qquad \nabla \cdot \mathbf{g} = \frac{3}{2} \Omega H^2 a^2 \delta$$

Look for solutions of the continuity and Poisson equations of the form $\boldsymbol{u} = F(a)\boldsymbol{g}$

Linear peculiar velocities

Solution is given by $\mathbf{u} = \frac{2f(\Omega)}{3H\Omega} \mathbf{g} \quad \text{where} \quad f(\Omega) \equiv \frac{a\dot{D}}{\dot{a}D} \simeq \Omega^{0.6}$

Zeld'ovich approximation: mass simply propagates along straight lines given by these vectors

The continuity equation can be rewritten

$$\delta(\mathbf{x}) = -\frac{\nabla \cdot \mathbf{u}}{aHf}$$

So the power spectrum of each component of u is given by

$$P_V(k) = (aHf)^2 P(k)k^{-2}$$

 k^{-1} factor shows that velocities come from larger-scale perturbations than density field

So peculiar velocities constrain f: can we measure these directly?

Obviously, can only hope to measure radial component of peculiar velocities

To do this, we need the redshift, and an independent measure of the distance (e.g. if galaxy lies on fundamental plane). Can then attempt to reconstruct the matter power spectrum

The 1/k term means that the velocity field probes large scales, but does directly test the matter field. However, current constraints are poor in comparison with those provided by other cosmological observations

redshift-space distortions

- Estimate distances from redshifts (i.e. velocities)
- Peculiar velocities (velocities in addition to Hubble flow) misinterpreted as distance shifts
- Coherent shifts can affect 2-pt functions

Motion of galaxies is independent of galaxy properties – galaxies act as test particles in flow of matter

what do linear z-space distortions measure?

- Real-Redshift space mapping
 - Kaiser formula first order in δ and θ
 - on small scales, we need 2^{nd} and 3^{rd} order ($\delta,\,\theta$ cross) terms
 - assumes irrotational velocity field
- Non-linear density field evolution
 - $-P_{gg}$ breaks from linear behaviour (small scale, late time)
- Non-linear velocity field evolution
 - $-P_{\theta\theta}$ breaks from linear behaviour (small scale, late time)
 - Fingers-of-God
- Assumes local, deterministic density bias

The break-down of the linear model

Percival, White, 2008, astro-ph/0808.0003

- Dodelson, SLAC lecture notes. Available online at
 - -<u>http://www-conf.slac.stanford.edu/ssi/2007/lateReg/program.htm</u>
- Dodelson, "Modern Cosmology", Academic Press
- Peacock, "Cosmological Physics", Cambridge University Press
- Liddle & Lyth, "Cosmological Inflation and Large-Scale Structure", Cambridge University Press
- Coles & Lucchin, "Cosmology: the origin and evolution of cosmic structure", Wiley
- Eisenstein et al. 2006, astro-ph/0604361 (configuration space description of perturbation evolution)
- Percival 2005, astro-ph/0508156 (linear growth in general dark energy models)
- Hamilton 1997, astro-ph/9708102, redshift-space distortions review

Measuring Galaxy Clustering and Making Predictions

Will Percival ICG, University of Portsmouth, UK

Lecture outline

- Measuring the over-density field
 - Angular & radial mask
 - Random catalogues
- Measuring 2-pt statistics
 - the power spectrum
 - the correlation function
 - redshift-space distortions
- Fisher matrices and predictions
 - background
 - future surveys
- Putting it all together
 - parameters choices
 - the MCMC technique

Lecture outline

- Measuring the over-density field
 - Angular & radial mask
 - Random catalogues
- Measuring 2-pt statistics
 - the power spectrum
 - the correlation function
 - redshift-space distortions
- Fisher matrices and predictions
 - background
 - future surveys
- Putting it all together
 - parameters choices
 - the MCMC technique

Create random catalogue with same spatial sampling as galaxies, but no clustering. α times as many objects. Use this to define the mean density

Modeling the angular galaxy mask

Modeling the angular galaxy mask

- completeness varies between plate overlap regions
- also need to consider region covered by parent catalogue
- both SDSS and 2dFGRS use an adaptive tiling strategy
- BOSS will not use an adaptive system, but a fixed set of pointings

10⁻¹

 10^{-2}

 10^{-3}

 10^{-4}

10⁻⁵ •

 10^{-6}

10⁻⁷ , -24

-22

-20

-18

M_{0.1 r} – 5log₁₀(h)

-16

-14

 $\log_{10} \Phi(M_{0.1 r}, z=0.1) [N h^3Mpc^{-3} M_{0.1 r}^{-1}]$

Modeling the radial galaxy distribution

each angular

position will

to redshift

distribution

have different

- for both the 2dFGRS and SDSS the ۲ magnitude limit changes with angular position, so the radial distribution of galaxies also changes
- Best approach fit luminosity • function (allowing for K+E corrections)

translating to an overdensity field

Can define an overdensity field

$$F(\mathbf{r}) = n_g(\mathbf{r}) - n_s(\mathbf{r})/\alpha$$

BUT: NEED TO TRANSLATE REDSHIFTS TO DISTANCES

There are a number of ways of dealing with this:

- assume one model. Check no significant change for nearby models P(k) shape only (Percival et al. 2001)
- 2. change the model used for each model to be tested (Percival et al. 2007)
- 3. allow for the effect of getting the cosmology wrong (Percival et al. 2009)

Lecture outline

- Measuring the over-density field
 - Angular & radial mask
 - Random catalogues
- Measuring 2-pt statistics
 - the power spectrum
 - the correlation function
 - redshift-space distortions
- Fisher matrices and predictions
 - background
 - future surveys
- Putting it all together
 - parameters choices
 - the MCMC technique

Translate over-density field onto grid, take Fourier transform, and measure the spherically averaged amplitude of the Fourier modes squared (ie. the power spectrum)

Effect of grid assignment is convolution in configurationspace, so multiplication in Fourier space easily included

Correcting for galaxy bias

In general, galaxy surveys do not produce homogeneous samples of galaxies

Galaxy luminosity varies systematically

Galaxy density varies systematically

Correcting for galaxy bias

In general, galaxy surveys do not produce homogeneous samples of galaxies

Large-scales are only traced by more distant, intrinsically brighter galaxies, which are more clustered

With a bias model,

- 1. we can weight galaxies to remove such effects (Percival et al. 2004)
- We can weight a measured power spectrum by an estimated median bias (Tegmark et al. 2006)

Weighting the galaxies for number density and bias

Low density – weight by galaxy High density – weight by volume

Change occurs when statistical and volume errors are equal, when nP=1

Now suppose each galaxy has a linear bias b_i, the optimal weight is $w_i = \frac{b_i^2}{1 + \sum_j \bar{n}(\mathbf{r_i}, L_j) b_j^2 \hat{P}(k)}$ up-weights very biased galaxies, containing the most signal $w_i = \frac{b_i^2}{1 + \sum_j \bar{n}(\mathbf{r_i}, L_j) b_j^2 \hat{P}(k)}$ normalisation changes to match

Feldman et al. (1994; ApJ 426, 23), Percival et al (2004; MNRAS)

Anisotropic power spectrum

Redshift-space distortions mean that the power spectrum is anisotropic

$$P_{\text{lin}}^{s}(k) = \langle |\delta_{g} + \mu^{2}\theta|^{2} \rangle$$

$$= P_{gg} + 2\mu^{2}P_{g\theta} + \mu^{4}P_{\theta\theta}$$

$$= (1 + \beta\mu^{2})^{2}P_{gg}$$

$$= (b + f\mu^{2})^{2}P_{mass}$$

Cannot easily measure $P(k,\mu)$ using a Fourier basis (except in the distant observer approximation). μ does not line up with cartesian grid

Additionally, redshift-space distortions

- 1. Couple modes
- 2. Cause a complicated dependence on the anisotropic model

Modeling an anisotropic power spectrum

e.g. Heavens & Taylor (1995: MNRAS, 275, 483)

Following Feldman et al. (1994), the error on the power spectrum is

 $\langle \delta \hat{P}(\mathbf{k}) \delta \hat{P}(\mathbf{k} + \delta \mathbf{k}) \rangle = |P(\mathbf{k})Q(\delta \mathbf{k}) + S(\delta \mathbf{k})|^2$

$$S(\mathbf{k}) \equiv \frac{(1+\alpha) \int d^3 r \,\bar{n}(\mathbf{r}) w^2(\mathbf{r}) e^{i\mathbf{k}\cdot\mathbf{r}}}{\int d^3 r \,\bar{n}^2(\mathbf{r}) w^2(\mathbf{r})} \qquad Q(\mathbf{k})$$

$$Q(\mathbf{k}) \equiv \frac{\int d^3 r \,\bar{n}^2(\mathbf{r}) w^2(\mathbf{r}) e^{i\mathbf{k}\cdot\mathbf{r}}}{\int d^3 r \,\bar{n}^2(\mathbf{r}) w^2(\mathbf{r})}$$

This is often difficult to calculate analytically, so mock catalogues, or jack-knife errors are usually used

For a sample with constant number density within a volume V, the error on the average power spectrum within a k-volume V_n reduces to

$$\langle P(\mathbf{k})P(\mathbf{k}')\rangle = \frac{1}{V_n V} \left[P(k)\delta_D(\mathbf{k}-\mathbf{k}') + 1/\bar{n}\right]^2$$

JK zones in the mock catalogue

Feldman et al. (1994; ApJ 426, 23), Cabre & Gaztanaga (2008; arXiv:0807.2460)

Linear model power spectrum calculated by CMBfast or CAMB

Eisenstein & Hu (1998) fitting formulae do not give a P(k) with sufficient accuracy for current measurements

Focus on modeling

- 1. non-linear matter evolution
- 2. galaxy bias
- 3. redshift-space effects

Currently need simulations & analytic models to test these effects

Fitting to just the BAO

Need to pull out the BAO from the power spectrum

Model shape of power spectrum with smooth fit

- 1. polynomial
- 2. spline
- 3. ???

Less risk of systematic if allow P(k) shape to vary with BAO model. ie. fit power with varying shape model combined with BAO, rather than just the BAO.

Measuring the correlation function

Create random catalogue with same spatial sampling as galaxies, but no clustering

DD = number of galaxy-galaxy pairs DR = number of galaxy-random pairs RR = number of random-random pairs

$$\xi = \frac{DD}{RR} - 1$$

$$\xi = \frac{DD}{DR} - 1$$

$$\xi = \frac{DD}{DR^2} - 1$$

$$\xi = \frac{DD - 2DR + RR}{RR}$$

properties

Landy & Szalay (1993; ApJ 412, 64)

Window functions and the integral constraint

Galaxies Correlation function calculation Randoms automatically takes care of window function: 0 multiplicative contribution is removed by O random catalogue Integral constraint is important: $\langle DD \rangle = \langle RR \rangle \frac{1+\xi}{1+w_V}$ Survey volume This term is called the integral constraint and includes the fact that we estimate the mean galaxy density from the sample itself $w_V = \int_V \xi(r, r') \, dr \, dr'$

Landy & Szalay (1993; ApJ 412, 64)

The anisotropic correlation function

Peacock & 2dFGRS team (2001; Nature 410, 169)

Modeling the correlation function

Power spectrum and correlation function form a Fourier pair

In absence of window function, power spectrum of different Fourier modes are uncorrelated. Not true for correlation function

$$P(\mathbf{k}) = \int \xi(\mathbf{r}) e^{i\mathbf{k}\cdot\mathbf{r}} d^3r$$

$$\xi(\mathbf{r}) = \int P(\mathbf{k}) e^{-i\mathbf{k}\cdot\mathbf{r}} \frac{d^3k}{(2\pi)^3}$$

To solve this integral, we could adopt a spherical basis with z-axis (θ =0) along **r**, and line-of-sight in (y,z)-plane (i.e. Φ_{los} =0).

$$P^{s}(\mathbf{k}) = (1 + \beta \mu^{2})^{2} P^{r}(k)$$

$$e^{-i\mathbf{k}\cdot\mathbf{r}} = rk\cos(\theta)$$

$$\mu = \cos(\phi)\sin(\theta)\sin(\theta_{\rm los}) + \cos(\theta)\cos(\theta_{\rm los})$$

Modeling the correlation function

80

-20

0

 $\sigma / h^{-1} Mpc$

of a quadrupole moment

Correlation function even changes when $\mu=0$, so not just flattening

Hamilton (1992; ApJ 412, 64)

20

modeling redshift-space distortions in ξ

METHOD 1: Measure Q, and relate to β

$$Q(s) = \frac{\xi_2(s)}{\xi_0(s) - (3/s^2) \int_0^s \xi_0(s') s'^2 \, ds'}$$

$$Q(s) = \frac{\frac{4}{3}\beta + \frac{4}{7}\beta^2}{1 + \frac{2}{3}\beta + \frac{1}{5}\beta^2}$$

METHOD 2: Estimate real-space ξ from projected ξ , and relate to average redshift-space ξ

$$\Xi = 2 \int_{\sigma}^{\infty} \frac{r\xi(r) \, dr}{(r^2 - \sigma^2)^{\frac{1}{2}}} \qquad \xi = -\frac{1}{\pi} \int_{r}^{\infty} \frac{(d\Xi(\sigma)/d\sigma) d\sigma}{(r^2 - \sigma^2)^{\frac{1}{2}}}$$
$$\frac{\xi(s)}{\xi(r)} = 1 + \frac{2\beta}{3} + \frac{\beta^2}{5}$$

METHOD 3:Model full anisotropic correlation function

METHOD 1: Perform Legendre polynomial expansion of anisotropic power spectrum, and calculate quadrupole

$$P_{\ell} \equiv \frac{2\ell + 1}{2} \int_{-1}^{+1} d\mu P^{s}(k,\mu) L_{\ell}(\mu)$$
$$\frac{P_{2}(k)}{P_{0}(k)} = \frac{(4/3)\beta + (4/7)\beta^{2}}{1 + (2/3)\beta + (1/5)\beta^{2}}$$

METHOD 2: calculate mix of monopole and quadrupole. This removes the bias dependence and measure the matter velocity power spectrum (on large scales)

$$\hat{P}(k) = \frac{7}{48} \left[5(7P_0 + P_2) - \sqrt{35}(35P_0^2 + 10P_0P_2 - 7P_2^2)^{1/2} \right]$$

Percival & White, 2008, astro-ph/0808.0003

$$\hat{P}(k) = \frac{7}{48} \left[5(7P_0 + P_2) - \sqrt{35}(35P_0^2 + 10P_0P_2 - 7P_2^2)^{1/2} \right]$$

This plane-parallel approximation works on scales $k < 0.1 hMpc^{-1}$

On large-scales, the primary systematic is a possible velocity-bias ...

Although galaxy velocities will trace those of the mass, the distribution does not have to (e.g. Percival & Schafer 2008, MNRAS 385, L78)

Percival & White, 2008, astro-ph/0808.0003

Beating the cosmic variance limit

If we have 2 samples of galaxies (in real space) with different deterministic biases,

 $\delta_1 = b_1 \delta_{mass}, \ \delta_2 = b_2 \delta_{mass}$ accuracy of b_1/b_2 measurement only depends on shot noise In redshift-space this result generalizes to $\delta_1 = (b_1 + f\mu^2)\delta_{\text{mass}}, \ \delta_2 = (b_2 + f\mu^2)\delta_{\text{mass}}$ giving b₁/b₂, f/b₁, and f/b₂ limited by only shot noise

Allows us to use non-radial modes to "extract" information about $f^2P(k)_{mass}$

Does not affect errors on the power spectrum shape.

redshift-space distortions vs weak lensing

redshift-space distortions	weak lensing
velocity & distortions depends on mass	lensing potential depends on mass
two galaxies at same location have same redshift distortion	two galaxies at same location have same lensing distortion
tests temporal metric fluctuations	tests temporal and spatial metric fluctuations
velocity-bias - galaxy velocities not Poisson sampling of mass	intrinsic alignments - original galaxy shapes depend on lensing potential
 science vs money? need spectra with deterministic bias, direct probe of fluctuations in all directions for high galaxy density, limited by cosmic variance 	 science vs money? need careful imaging 1-2% projection effect, but tests fluctuations in all directions for (very) high galaxy density, limited by cosmic variance

Lecture outline

- Measuring the over-density field
 - Angular & radial mask
 - Random catalogues
- Measuring 2-pt statistics
 - the power spectrum
 - the correlation function
 - redshift-space distortions
- Fisher matrices and predictions
 - background
 - future surveys
- Putting it all together
 - parameters choices
 - the MCMC technique

Fisher matrix introduction

Suppose we have a model with $\Theta = (\theta_1, \theta_2, ..., \theta_n)$ parameters

That we wish to constrain with data
$$X=(x_1,x_2,...,x_n)$$

The Likelihood of the data given a model is $L(X|\Theta)$

Sir Ronald Aylmer Fisher (1890-1962)

Fisher matrix is given by
$$F_{ij} \equiv \left\langle \frac{\partial^2 \mathcal{L}}{\partial \theta_i \partial \theta_j} \right\rangle$$
 where $\mathcal{L} \equiv -\ln L$

The Cramer-Rao inequality shows that the Fisher matrix gives the best model error we can hope to achieve

$$\Delta \theta_i \ge (F_{ii})^{-1/2}$$

Gaussian Fisher matrix for P(k)

Suppose that the Likelihood has a multi-variate Gaussian distribution, with $\langle x \rangle = \mu$, and covariance matrix C

$$F_{ij} = \frac{1}{2} \left[C^{-1} \frac{\partial C}{\partial \theta_i} C^{-1} \frac{\partial C}{\partial \theta_j} \right] + \frac{\partial \mu^T}{\partial \theta_i} C^{-1} \frac{\partial \mu}{\partial \theta_j}$$

For the galaxy power spectrum, we can use the Feldman et al (1994) result, to approximate the power spectrum covariance in band powers with k-space volume V_n as

$$\langle P(k_n)P(k_m)\rangle = 2\frac{P(k_n)P(k_n)}{V_n V_{\text{eff}}(k_n)}\delta_D(k_m - k_n)$$
$$V_{\text{eff}}(k) \equiv \int \left[\frac{\bar{n}(\mathbf{r})P(k)}{1 + \bar{n}(\mathbf{r})P(k)}\right]^2 d^3r$$

Which gives a Fisher matrix, that can be written (if we now integrate over many small shells V_n) $F_{ij} = \frac{1}{2} \int \frac{d^3k}{(2\pi)^3} \left(\frac{\partial \ln P}{\partial \theta_i}\right) \left(\frac{\partial \ln P}{\partial \theta_i}\right) V_{\text{eff}}(\mathbf{k})$

Tegmark (1997; PRL, 79, 3806)

Gaussian Fisher matrix for $\delta(k)$

As an alternative to the power spectrum, we can work with $\delta(k)$ as our "data", and covariance (as before)

$$\langle \delta(\mathbf{k})\delta(\mathbf{k'})\rangle = \frac{1}{V_n V} \left[P(k)\delta_D(\mathbf{k}-\mathbf{k'}) + 1/\bar{n}\right]$$

This gives exactly the same Fisher matrix as we recovered using P(k) in band powers as our data (exercise!)

Redshift-space distortion Fisher matrix

For our set of parameters to test, we have freedom to choose any of the physical processes that contribute to the clustering

For example, we can single out the parameters controlling the anisotropic normalization of the power spectrum within a background cosmology, $f\sigma_8$ and $b\sigma_8$

Code to estimate errors on $f\sigma_8$ from the Fisher matrix formalism is available from:

http://mwhite.berkeley.edu/Redshift

White, Song & Percival, 2009, MNRAS, 397, 1348

BAO Fisher matrix

For our set of parameters to test, we have freedom to choose any of the physical processes that contribute to the clustering

It is also possible to isolate the BAO, and fit for H(z) and $D_A(z)$, which cause radial and angular distortions

Code to estimate these errors from the Fisher matrix formalism is available from:

http://cmb.as.arizona.edu/~eisenste/ acousticpeak/bao_forecast.html

Seo & Eisenstein, 2007, astro-ph/0701079

We should allow for the coupling between the redshift-space distortions and the geometrical squashing caused by getting the geometry wrong. Effects are not perfectly degenerate

Ballinger, Peacock & Heavens 1999, MNRAS, 282, 877

Present/Future BAO Surveys

- SDSS-II (present 2008)
 800,000 z<0.5 spectra over 7500deg²
- Wiggle-Z (present 2010) - 400,000 z~0.75 spectra over 1000deg²
- Baryon Oscillation Spectroscopic Survey (BOSS: 2009-2014)
 - 1,500,000 z~0.6 spectra over 10,000deg²+QSOs
- Dark Energy Survey (DES: 2010-2015)

 5000deg² multi-colour imaging survey on Blanco 4m + VISTA
 photo-z for 300,000,000 galaxies
- Plus: VST-Atlas, SUMIRE, SKA, HETDEX, LAMOST, LSST, Pan-STARRS, PAU, Euclid/JDEM, + other MOS plans?

DETF Figure-of-merit is area of 1σ confidence region for 2-parameter DE model, with equation of state:

$$w(z) = w_0 + (1-a)w_a$$

= $w_p + w_a(a_p - a)$

Survey	DETF figure of merit	
Current + Planck	53.7	
+ BOSS (1 year)	79.7	
+ BOSS (5 year)	109.9	
+ DES (BAO only)	75.1	
+ Wiggle-Z	71.5	

BOSS: A next generation BAO experiment

- SDSS finished its original, legacy survey in 2008
- Spectroscopic survey role identified as remaining worldclass (7.5deg² field-of-view, even though 2.5m telescope)
- SDSS Imaging detects and can distinguish luminous red galaxies out to z<0.7 (e.g. AGES, 2SLAQ)
- Obvious next step: large survey for LRGs to measure BAO for z<0.7

- Can also pick up high-z BAO signal in Ly-α forest in QSO spectra
- Very efficient: each spectra gives skewer though density field, rather than single point

BOSS: Summary

- $\Omega = 10,000 \text{deg}^2$
- Selected from 11,000deg² of imaging
 - $-8,500 \text{deg}^2$ in North
 - -2,500deg² in South (fill in SDSS-II Southern stripes)
- LRGs : $150/deg^2$, $z \sim 0.1 0.7$ (direct BAO)
- 1% d_A , 1.8% H at z ~ 0.35, 0.6
- QSOs : $20/deg^2$, $z \sim 2.1 3.0$ (BAO from Ly- α forest)
- 1.5% d_A , 1.2% H at $z \sim 2.5$
- Cosmic variance limited to $z \sim 0.6$: as good as LSS mapping will get with a single ground based telescope
- Leverage existing SDSS hardware & software where possible
- Sufficient funding is in place and project is underway
- www.sdss3.org/boss

Lecture outline

- Measuring the over-density field
 - Angular & radial mask
 - Random catalogues
- Measuring 2-pt statistics
 - the power spectrum
 - the correlation function
 - redshift-space distortions
- Fisher matrices and predictions
 - background
 - future surveys
- Putting it all together
 - parameters choices
 - the MCMC technique

Model parameters (describing LSS & CMB)

content of the Universe

total energy density Ω_{tot} (=1?) matter density Ω_m baryon density Ω_b neutrino density Ω_n (=0?) Neutrino species f_n dark energy eqⁿ of state w(a) (=-1?) or W_0, W_1 inflation scalar spectral index n_s (=1?) normalisation σ_8 running $a = dn_s/dk$ (=0?) tensor spectral index n_t (=0?) tensor/scalar ratio r (=0?)

perturbations after

evolution to present day Hubble parameter h Optical depth to CMB T

parameters usually marginalised and ignored galaxy bias model b(k) (=cst?) or b,Q CMB beam error B CMB calibration error C

Assume Gaussian, adiabatic fluctuations

WMAP3 parameters used

COSMOLOGICAL PARAMETERS USED IN THE ANALYSIS

Parameter	Description	Definition		
H ₀	Hubble expansion factor	$H_0 = 100h \text{ Mpc}^{-1} \text{ km s}^{-1}$		
ω _b	Baryon density	$\omega_b = \Omega_b h^2 = \rho_b / 1.88 \times 10^{-26} \text{ kg m}^{-3}$		
ω _c	Cold dark matter density	$\omega_c = \Omega_c h^2 = \rho_c / 18.8 \text{ yoctograms m}^{-3}$		
f _ν	Massive neutrino fraction	$f_{\nu} = \Omega_{\nu} / \Omega_c$		
$\sum m_{\nu}$	Total neutrino mass (eV)	$\sum m_{\nu} = 94\Omega_{\nu}h^2$		
N _{\nu}	Effective number of relativistic neutrino species			
Ω_k	Spatial curvature			
Ω _{DE}	Dark energy density	For $w = -1$, $\Omega_{\Lambda} = \Omega_{DE}$		
Ω _m	Matter energy density	$Ω_m = Ω_b + Ω_c + Ω_ν$		
w	Dark energy equation of state	$w = p_{\rm DE}/\rho_{\rm DE}$		
Δ_R^2	Amplitude of curvature perturbations R	$\Delta_R^2 (k = 0.002 \text{ Mpc}^{-1}) \approx 29.5 \times 10^{-10} A$		
A	Amplitude of density fluctuations ($k = 0.002 \text{ Mpc}^{-1}$)	See Spergel et al. (2003)		
n _s	Scalar spectral index at 0.002 Mpc ⁻¹			
α	Running in scalar spectral index	$\alpha = dn_s/dlnk$ (assume constant)		
r	Ratio of the amplitude of tensor fluctuations to scalar potential			
	fluctuations at $k = 0.002 \text{ Mpc}^{-1}$			
n _t	Tensor spectral index	Assume $n_t = -r/8$		
au	Reionization optical depth			
σ_8	Linear theory amplitude of matter			
	fluctuations on 8 h^{-1} Mpc			
Θ_s	Acoustic peak scale (deg)	See Kosowsky et al. (2002)		
A _{SZ}	SZ marginalization factor	See Appendix A		
b _{SDSS}	Galaxy bias factor for SDSS sample	$b = [P_{SDSS}(k, z = 0)/P(k)]^{1/2}$ (constant)		
C_{220}^{TT}	Amplitude of the TT temperature power spectrum at $l = 220$	-		
Zg	Weak lensing source redshift			

Multi-parameter fits to multiple data sets

- Given WMAP3 data, other data are used to break CMB degeneracies and understand dark energy
- Main problem is keeping a handle on what is being constrained and why
 - difficult to allow for systematics
 - you have to believe all of the data!
- Have two sets of parameters
 - those you fix (part of the prior)
 - those you vary
- Need to define a prior
 - what set of models
 - what prior assumptions to make on them (usual to use uniform priors on physically motivated variables)
- Most analyses use the Monte-Carlo Markov-Chain technique

MCMC method maps the likelihood surface by building a chain of parameter values whose density at any location is proportional to the likelihood at that location p(x)

given a chain at parameter x, and a candidate for the next step x', then x' is accepted with probability

 $\begin{array}{c}
1 \\
p(x')/p(x)
\end{array}$ p(x') > p(x)otherwise

for any symmetric proposal distribution q(x|x') = q(x'|x), then an infinite number of steps leads to a chain in which the density of samples is proportional to p(x).

CHAIN: x₁, x₂, x₂, x₄, ...

MCMC problems: jump sizes

Chain takes some time to reach a point where the initial position chosen has no influence on the statistics of the chain (very dependent on the proposal distribution q(x))

How do we know when the chain has sampled the likelihood surface sufficiently well, that the mean & std deviation for each parameter are well constrained?

Gelman & Rubin (1992) convergence test:

Given M chains (or sections of chain) of length N, Let W be the average variance calculated from individual chains, and B be the variance in the mean recovered from the M chains. Define

$$R = \frac{N-1}{N} + \frac{1}{W} \left(1 + \frac{B}{N}\right)$$

Then R is the ratio of two estimates of the variance. The numerator is unbiased if the chains fully sample the target, otherwise it is an overestimate. The denominator is an underestimate if the chains have not converged. Test: set a limit R<1.1

Resulting constraints

Tegmark et al, 2006, arXiv:0608632

Further reading

- Power spectrum measurement
 - Feldman, Kaiser & Peacock (1994), ApJ 426, 23
 - Hamilton (1997), astro-ph/9708102
- Correlation function measurement
 - Landy & Szalay (1993), ApJ 412, 64
- Fisher matrix
 - -BAO: Seo & Eisenstein (2003), ApJ, 598, 720
 - z-space distortions: White, Song & Percival (2009), MNRAS, 397, 1348
- Combined constraints (for example)
 - Sanchez et al. (2005), astro-ph/0507538
 - Tegmark et al. (2006), astro-ph/0608632
 - Spergel et al. (2007), ApJSS, 170, 3777

Current Galaxy Clustering Measurements and Cosmological Constraints

Will Percival ICG, University of Portsmouth, UK

Lecture outline

- review of 2-pt analyses from SDSS and 2dFGRS (apologies for incomplete & often biased nature)
 - $-\Omega_{m}h$ constraints from P(k) shape
 - BAO detection
- Latest SDSS DR7 analyses (by myself and collaborators)
 - LRG P(k)
 - BAO observations
 - combination with WMAP data

Analysis of the part-complete 2dFGRS

Analysed the part-complete 2dFGRS (147000 galaxies)

Percival et al. 2001, MNRAS, 327, 1297

Analysis of the part-complete 2dFGRS

Percival et al. 2001, MNRAS, 327, 1297

Analysis of the SDSS DR2 main galaxies

Analysis of the SDSS DR2 main galaxies

Cluster collapsing, can be used to remove FOG

Need to be very careful: power spectrum shape is quite sensitive to this

Tegmark et al. 2004, arXiv:0310725

Analysis of the SDSS DR2 main galaxies

Need to remove the effect of choosing different galaxies to measure different scales

Here, this was done by correcting the power spectrum after it was measured

Analysis of the final 2dFGRS sample

Cole et al. 2005, MNRAS, 362, 505

Again, CDM models fit the correlation function adequately well (although peak height is slightly too large) with (assuming $n_s=1$, h=0.72)

assuming $\Omega_{b}h^{2}=0.024$, $\Omega_{m}h^{2}=0.133\pm0.011$, Giving $\Omega_{b}/\Omega_{m}=0.18$

Eisenstein et al., 2005, ApJ, 633, 560

power spectrum shape constraints

Pre-2006 constraints from P(k)

SURVEY	publication	redshifts	method	₩ _m h	f _b	W _m h f _b =0.17
2dFGRS	Percival et al. 2001	166,490	Fourier analysis	0.20 ± 0.03	0.15 ± 0.07	0.206 ± 0.023
2dFGRS	Percival et al. 2004	142,756	Spherical Harmonics			0.215 ± 0.035
2dFGRS	Cole et al. 2005	221,414	Fourier analysis	0.168 ± 0.016	0.185 ± 0.046	0.172 ± 0.014
SDSS	Pope et al. 2004	205,484	KL analysis	0.264 ± 0.043	0.286 ± 0.065	0.207 ± 0.030
SDSS	Tegmark et al. 2004	205,443	Spherical Harmonics			$0.225 \\ \pm 0.040$
SDSS LRGs	Eisenstein et al 2005	46,748	correlation function			$0.185 \pm 0.015^*$

*uses W_b h²=0.024, rather than f_b=0.17

WMAP 3-year analysis found a discrepancy

	WMAP	WMAP	WMAP+ACBAR	WMAP +
	Only	+CBI+VSA	+BOOMERanG	2dFGRS
Parameter				
$100\Omega_b h^2$	$2.233^{+0.072}_{-0.091}$	$2.203^{+0.072}_{-0.090}$	$2.228^{+0.066}_{-0.082}$	$2.223^{+0.066}_{-0.083}$
$\Omega_m h^2$	$0.1268^{+0.0073}_{-0.0128}$	$0.1238^{+0.0066}_{-0.0118}$	$0.1271^{+0.0070}_{-0.0128}$	$0.1262^{+0.0050}_{-0.0103}$
h	$0.734_{-0.038}^{+0.028}$	$0.738^{+0.028}_{-0.037}$	$0.733^{+0.030}_{-0.038}$	$0.732^{+0.018}_{-0.025}$
A	$0.801^{+0.043}_{-0.054}$	$0.798^{+0.047}_{-0.057}$	$0.801^{+0.048}_{-0.056}$	$0.799^{+0.042}_{-0.051}$
τ	$0.088^{+0.028}_{-0.034}$	$0.084^{+0.031}_{-0.038}$	$0.084^{+0.027}_{-0.034}$	$0.083^{+0.027}_{-0.031}$
n_s	$0.951^{+0.015}_{-0.019}$	$0.945^{+0.015}_{-0.019}$	$0.949^{+0.015}_{-0.019}$	$0.948^{+0.014}_{-0.018}$
σ_8	$0.744^{+0.050}_{-0.060}$	$0.722^{+0.044}_{-0.056}$	$0.742^{+0.045}_{-0.057}$	0.737 ± 0.033 -0.045
Ω_m	$0.238^{+0.027}_{-0.045}$	$0.229^{+0.026}_{-0.042}$	$0.239^{+0.025}_{-0.046}$	$0.236^{+0.016}_{-0.029}$

	WMAP+	WMAP+	WMAP+	WMAP +	WMAP+
	SDSS	LRG	SNLS	SN Gold	CFHTLS
Parameter					
$100\Omega_b h^2$	$2.233^{+0.062}_{-0.086}$	$2.242^{+0.062}_{-0.084}$	$2.233^{+0.069}_{-0.088}$	$2.227^{+0.065}_{-0.082}$	$2.247^{+0.064}_{-0.082}$
$\Omega_m h^2$	$0.1329^{+0.0057}_{-0.0109}$	$0.1337^{+0.0047}_{-0.0098}$	$0.1295^{+0.0055}_{-0.0106}$	$0.1349^{+0.0054}_{-0.0106}$	$0.1410^{+0.0042}_{-0.0094}$
h	$0.709^{+0.024}_{-0.032}$	$0.709^{+0.016}_{-0.023}$	$0.723^{+0.021}_{-0.030}$	$0.701^{+0.020}_{-0.026}$	$0.686^{+0.017}_{-0.024}$
Α	$0.813^{+0.042}_{-0.052}$	$0.816^{+0.042}_{-0.049}$	$0.808^{+0.044}_{-0.051}$	$0.827^{+0.045}_{-0.053}$	$0.852^{+0.036}_{-0.047}$
τ	$0.079^{+0.029}_{-0.032}$	$0.082^{+0.028}_{-0.033}$	$0.085^{+0.028}_{-0.032}$	$0.079^{+0.028}_{-0.034}$	$0.088^{+0.021}_{-0.031}$
n_s	$0.948^{+0.015}_{-0.018}$	$0.951^{+0.014}_{-0.018}$	$0.950^{+0.015}_{-0.019}$	$0.946^{+0.015}_{-0.019}$	$0.950^{+0.015}_{-0.019}$
σ_8	$0.772 \pm 0.036 \\ -0.048$	$0.781^{+0.032}_{-0.045}$	$0.758^{+0.038}_{-0.052}$	$0.784^{+0.035}_{-0.049}$	$0.826^{+0.023}_{-0.035}$
Ω_m	$0.266^{+0.025}_{-0.040}$	$0.267^{+0.017}_{-0.029}$	$0.249^{+0.023}_{-0.034}$	$0.276^{+0.022}_{-0.036}$	$0.301^{+0.018}_{-0.031}$

Spergel et al. 2006, astro-ph/0603449

the problem is scale-dependent bias

Percival et al. 2007, astro-ph/0608636

the problem is scale-dependent bias

By subdividing 2dFGRS into red and blue galaxies, Sanchez & Cole also concluded that differences with SDSS were caused by scale-dependent galaxy bias

Sanchez & Cole 2007, arXiv:0708.1517

Bias in this context means relation between $P(k)_{lin} \& P(k)_{obs}$

shot noise change (Seljak 2001) $P(k)_{\rm obs} = b^2 P(k)_{\rm lin} + A$

Quadratic (Seo & Eisenstein 2005) $P(k)_{\text{obs}} = b^2 P(k)_{\text{lin}} + A_0 + A_1 k + A_2 k^2$

Q model (Cole 2005) $P(k)_{obs} = b^2 P(k)_{lin} \frac{1 + Qk^2}{1 + Ak}$

We really want a full model for galaxy formation

see review by Smith et al. 2007, astro-ph/0609547

Measuring scale-dependent galaxy bias

Anisotropic $\boldsymbol{\xi}$ analysis of the SDSS DR3 LRGs

Okumura et al., 2007, arXiv:0711.3640

power spectrum analysis of SDSS DR4 LRGs

Analysis of SDSS DR4 LRG sample (approx $\frac{1}{2}$ of final DR7 sample) shows strong oscillations, detected at 3.3 σ

BAO location is consistent with Eisenstein et al. analysis of DR3

power spectrum analysis of SDSS DR4 LRGs

Tegmark et al, 2006, arXiv:0608632

BAO of SDSS DR5 galaxies

Isolated BAO in power spectrum by dividing by a spline fit. Measured Ω_m =0.256±0.027 for flat ACDM models

Percival et al, 2007a, arXiv:0608635

Power spectrum of SDSS DR5 galaxies

Measured P(k) for SDSS DR5 and showed that the shape is strongly dependent on the range of scales fitted. Any derived shape constraints are almost completely degenerate with the galaxy bias model assumed

modeling the distance-redshift relation

Galaxy redshifts need to be converted to distances before BAO can be measured

Not a problem for small sets of models (1–2 parameters), but time consuming for more

Solve problem by parametrising distance-redshift relation by smooth fit: can then be used to constrain multiple sets of models

For SDSS+2dFGRS analysis, choose two modes at z=0.2 and z=0.35, for fit to D_V

BAO from the 2dFGRS + SDSS DR5

BAO detected at z~0.2

BAO detected at z~0.35

BAO from combined sample

Percival et al., 2007, MNRAS, 381, 1053

Discrepancy with ACDM?

LRG BAO on too small scales: further away than expected, so more acceleration between z=0.2 and 0.35

Distance ratio found is $D_V(0.35)/D_V(0.2) = 1.812 \pm 0.060$

CDM expects $D_V(0.35)/D_V(0.2) = 1.67$

Discrepancy is 2.4σ

Percival et al., 2007, MNRAS, 381, 1053

Anisotropic $\boldsymbol{\xi}$ analysis of the SDSS DR6 LRGs

Cabre & Gaztanaga, 2008, arXiv:0807.2460 Gaztanaga et al., 2008, arXiv:0807.3551

z-space distortions in the SDSS DR6 LRGs

Use multipoles of ξ , and define the quadrupole Q(s)

$$\xi_{\ell}(s) = \frac{2\ell + 1}{2} \int_{-1}^{+1} \xi(s, \mu) P_{\ell}(\mu) \, d\mu$$
$$Q(s) = \frac{\xi_2(s)}{\xi_0(s) - (3/s^2) \int_0^s \xi_0(s') s'^2 \, ds'}$$

Using linear theory, and in the distant-observer approximation, these can be related to

$$Q(s) = \frac{\frac{4}{3}\beta + \frac{4}{7}\beta^2}{1 + \frac{2}{3}\beta + \frac{1}{5}\beta^2}$$

Giving β=0.34±0.03

Cabre & Gaztanaga, 2008, arXiv:0807.2460

Radial BAO in the SDSS DR6 LRGs?

Gaztanaga et al., 2008, arXiv:0807.3551 Miralda-Escude, 2009, arXiv:0901.1219

DR7 update on radial BAO signal

Miralda-Escude, 2009, arXiv:0901.1219

SDSS DR7 LRG correlation function analysis

Find results consistent with DR3 analysis, although with higher amplitude in the large-scale tail, also seen by Sanchez et al. (2009) From analysis of mock catalogues, show that there is a 10% chance that we would not see a peak

Kazin et al., 2009, arXiv:0908.2598

BAO in the 3-pt

$$Q_3 = \frac{\xi_3(r_{12}, r_{23}, r_{13})}{\xi_2(r_{12})\xi_2(r_{23}) + \xi_2(r_{12})\xi_2(r_{13}) + \xi_2(r_{23})\xi_2(r_{13})}$$

Perturbation theory predicts that the 3-pt function, created by nonlinear gravitational infall, will be affected by the BAO feature

Gaztanaga et al., 2008, arXiv:0807.2448

Lecture outline

- review of 2-pt analyses from SDSS and 2dFGRS (apologies for incomplete & often biased nature)
 - $-\Omega_{m}h$ constraints from P(k) shape
 - BAO detection
- Latest SDSS DR7 analyses (by myself and collaborators)
 - LRG P(k)
 - BAO observations
 - combination with WMAP data

Cosmology from the SDSS DR7 LRG Clustering

Plan to use all of our new knowledge about the effects and model the shape of the LRG power spectrum to constrain cosmological models

step 1: FOG compression

Use an anisotropic FOF group finder with parameters derived from simulations to find halo centres.

We therefore calculate the halo rather than LRG power spectrum

Test cosmological constraints against residual velocity dispersion from LRGs in single halos that are not central

step 2: model window, non-linearities, bias

P(k)	Definition	Reference
$\hat{P}_{LRG}(k)$	measured angle averaged redshift-space power spectrum of the LRGs	-
$\hat{P}_{halo}(k)$	measured power spectrum of reconstructed halo density field	-
$P_{lin}(k)$	linear power spectrum computed by CAMB	Lewis et al. (2000)
$P_{DM}(k)$	theoretical real-space non-linear power spectrum of dark matter	-
$P_{nw}(k)$	theoretical linear power spectrum without BAO ("no wiggles")	Eisenstein & Hu (1998)
$P_{damp}(k)$	theoretical linear power spectrum with damped BAO (Eqn. 10)	Eisenstein et al. (2007b)
$P_{halo}(k,\mathbf{p})$	model for the reconstructed halo power spectrum for cosmological parameters p	Reid et al. (2008)
$P_{halo,win}(k,{f p})$	$P_{halo}(k, \mathbf{p})$ convolved with survey window function (Eqn. 5)	Percival et al. (2007)
	and directly compared with $P_{halo}(k)$ in the likelihood calculation (Eqn. 6)	

prescription

Effect of changing the scalar spectral index n_s on the primary constraints on $\Omega_m h^2$ and D_V

BAO in SDSS DR7 + 2dFGRS power spectra

- Combine 2dFGRS, SDSS DR7 LRG and Main galaxy samples
- split into redshift slices and fit P(k) with model comprising smooth fit × BAO

SLICE	z_{\min}	$z_{ m max}$	$N_{ m gal}$	$V_{ m eff}$	$ar{n}$
1	0.0	0.5	895 834	0.42	128.1
2	0.0	0.4	874 330	0.38	131.2
3	0.0	0.3	827 760	0.27	138.3
4	0.1	0.5	505 355	0.40	34.5
5	0.1	0.4	483 851	0.36	35.9
6	0.2	0.5	129 045	0.27	1.92
7	0.3	0.5	68 074	0.15	0.67

Dealing with cosmological dependencies

BAO position measured by fitting single measured P(k) calculated assuming a Λ CDM cosmology

A window function which depends on the model to be tested, is used to convolve the model power spectrum before testing against the data

This includes the offset caused by the dilation of scale, and the broadening of the window caused by getting the cosmology to be tested wrong

Is D_V the correct parameter to constrain?

Testing the errors

Tests comparing parameters and errors recovered for mock data against the true cosmology, show we need to increase the errors. Gaussian realisations of power spectra show this is caused by the non-Gaussian nature of the Likelihood

BAO in SDSS DR7 + 2dFGRS power spectra

• results can be written as independent constraints on a distance measure and a tilt around this

 $r_s(z_d)/D_V(0.275) = 0.1390 \pm 0.0037 \ (2.7\%)$ $D_V(0.37)/D_V(0.2) = 1.736 \pm 0.065$

- consistent with ΛCDM models at 1.1σ when combined with WMAP5
- Reduced discrepancy compared with DR5 analysis
 - more data
 - revised error analysis (allow for non-Gaussian likelihood)
 - more redshift slices analyzed
 - improved modeling of LRG z-distribution

How to present BAO constraints?

Anchor BAO at high redshift using the CMB?

Include parameter dependencies from modeling the comoving sound horizon?

Only consider ratios of BAO measurements, effectively forcing a cosmological model that lines up the BAO

Comparing P(k) constraints against different data

ACDM models with curvature

flat wCDM models

Comparing BAO constraints against different data

w-CDM models with curvature

w-CDM models with curvature

Parameter constraints

parameter	ΛCDM	oΛCDM	wCDM	owCDM	owCDM+SN
Ω_m	0.289 ± 0.019	0.309 ± 0.025	0.328 ± 0.037	0.306 ± 0.050	0.312 ± 0.022
H_0	69.4 ± 1.6	66.0 ± 2.7	64.3 ± 4.1	$66.7^{+5.9}_{-5.6}$	65.6 ± 2.5
$D_V(0.35)$	1349 ± 23	1415 ± 49	1398 ± 45	1424 ± 49	1418 ± 49
$r_{s}/D_{V}(0.35)$	0.1125 ± 0.0023	0.1084 ± 0.0034	0.1094 ± 0.0032	$0.1078\substack{+0.0033\\-0.0034}$	0.1081 ± 0.0034
Ω_k	-	$-0.0114^{+0.0076}_{-0.0077}$	-	-0.009 ± 0.012	-0.0109 ± 0.0088
w	-	-	$\textbf{-0.79} \pm 0.15$	-1.06 ± 0.38	$\textbf{-0.99} \pm 0.11$
Ω_{Λ}	0.711 ± 0.019	0.703 ± 0.021	0.672 ± 0.037	$0.703^{+0.057}_{-0.058}$	0.699 ± 0.020
Age (Gyr)	13.73 ± 0.13	14.25 ± 0.37	13.87 ± 0.17	14.27 ± 0.52	14.24 ± 0.40
$\Omega_{ m tot}$	-	$1.0114_{-0.0076}^{+0.0077}$	-	1.009 ± 0.012	1.0109 ± 0.0088
$100\Omega_b h^2$	2.272 ± 0.058	2.274 ± 0.059	$2.293^{+0.062}_{-0.063}$	$2.279^{+0.066}_{-0.065}$	$2.276^{+0.060}_{-0.059}$
$\Omega_c h^2$	$0.1161^{+0.0039}_{-0.0038}$	0.1110 ± 0.0052	$0.1112_{-0.0057}^{+0.0056}$	$0.1103_{-0.0054}^{+0.0055}$	$0.1110_{-0.0052}^{+0.0051}$
au	0.084 ± 0.016	0.089 ± 0.017	0.088 ± 0.017	0.088 ± 0.017	0.088 ± 0.017
n_s	0.961 ± 0.013	0.962 ± 0.014	0.969 ± 0.015	0.965 ± 0.016	0.964 ± 0.014
$\ln(10^{10}A_{05})$	$3.080\substack{+0.036\\-0.037}$	3.068 ± 0.040	$3.071\substack{+0.040\\-0.039}$	3.064 ± 0.041	3.068 ± 0.039
σ_8	0.824 ± 0.025	0.796 ± 0.032	0.735 ± 0.073	0.79 ± 0.11	$0.790^{+0.045}_{-0.046}$

parameter	ΛCDM	oΛCDM	wCDM	owCDM	owCDM+SN	owCDM+ H_0	$owCDM{+}SN{+}H_0$
Ω_m	0.278 ± 0.018	0.283 ± 0.019	0.283 ± 0.026	$0.240^{+0.044}_{-0.043}$	0.290 ± 0.019	$0.240^{+0.025}_{-0.024}$	0.279 ± 0.016
H_0	70.1 ± 1.5	$68.3^{+2.2}_{-2.1}$	69.3 ± 3.9	75.3 ± 7.1	67.6 ± 2.2	74.8 ± 3.6	69.5 ± 2.0
Ω_k	-	$-0.007^{+0.006}_{-0.007}$	-	-0.013 ± 0.007	-0.006 ± 0.008	-0.014 ± 0.007	-0.003 ± 0.007
w	-	=	-0.97 ± 0.17	$-1.53^{+0.51}_{-0.50}$	$\textbf{-0.97} \pm 0.10$	$-1.49^{+0.32}_{-0.31}$	-1.00 ± 0.10
Ω_{Λ}	0.722 ± 0.018	0.724 ± 0.019	0.717 ± 0.026	0.772 ± 0.048	0.716 ± 0.019	0.773 ± 0.029	0.724 ± 0.018
$100\Omega_b h^2$	2.267 ± 0.058	2.269 ± 0.060	2.275 ± 0.061	$2.254^{+0.062}_{-0.061}$	2.271 ± 0.061	$2.254^{+0.061}_{-0.062}$	2.284 ± 0.061
τ	0.086 ± 0.016	0.089 ± 0.017	0.087 ± 0.017	0.088 ± 0.017	0.089 ± 0.017	0.088 ± 0.017	$0.089^{+0.017}_{-0.018}$
n_s	0.961 ± 0.013	0.963 ± 0.014	0.963 ± 0.015	0.958 ± 0.014	0.963 ± 0.014	0.957 ± 0.014	0.964 ± 0.014
$\ln(10^{10}A_{05})$	$3.074_{-0.039}^{+0.040}$	3.060 ± 0.042	3.070 ± 0.041	$3.062^{+0.042}_{-0.043}$	$3.062^{+0.041}_{-0.042}$	3.062 ± 0.042	3.072 ± 0.042
d _{0.275}	0.1411 ± 0.0030	0.1387 ± 0.0036	$0.1404^{+0.0036}_{-0.0035}$	0.1382 ± 0.0037	0.1379 ± 0.0036	$0.1387^{+0.0036}_{-0.0037}$	$0.1402^{+0.0033}_{-0.0034}$
$D_V(0.275)$	1080 ± 18	1110^{+32}_{-31}	1089 ± 31	1111 ± 33	1115 ± 32	1107 ± 31	1091^{+27}_{-28}
f	1.6645 ± 0.0043	1.6643 ± 0.0045	1.661 ± 0.019	1.72 ± 0.056	1.660 ± 0.011	$1.7187^{+0.0337}_{-0.0334}$	1.6645 ± 0.0107
Age (Gyr)	13.73 ± 0.12	14.08 ± 0.33	$13.76^{+0.15}_{-0.14}$	14.49 ± 0.52	14.04 ± 0.36	14.48 ± 0.48	$13.86^{+0.34}_{-0.33}$
$\Omega_c h^2$	0.1139 ± 0.0041	$0.1090^{+0.0060}_{-0.0061}$	$0.1122^{+0.0068}_{-0.0069}$	$0.1107^{+0.0063}_{-0.0062}$	$0.1096^{+0.0061}_{-0.0062}$	$0.1108^{+0.0060}_{-0.0061}$	0.1115 ± 0.0061
Ω_{tot}	-	$1.007^{+0.006}_{-0.007}$	-	1.013 ± 0.007	1.006 ± 0.008	1.014 ± 0.007	1.003 ± 0.007
σ_8	0.813 ± 0.028	0.787 ± 0.037	$0.792\substack{+0.081\\-0.082}$	0.907 ± 0.117	$0.780\substack{+0.052\\-0.053}$	0.904 ± 0.074	$0.801\substack{+0.053\\-0.052}$

Further reading

- Previous analysis references listed through talk
- SDSS DR7 analyses
 - LRG P(k), Reid et al. (2009, arXiv:0907.1659)
 - BAO from combined sample, Percival et al. (2009, arXiv:0907.1660)