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Perturbation statistics: correlation function 

definition of 
correlation function 

from statistical 
isotropy 

from statistical 
homogeneity 

can estimate correlation 
function using galaxy (DD) 
and random (RR) pair counts 
at separations ~r 

overdensity 
field 

ξ(x1,x2) ≡ 〈δ(x1)δ(x2)
= ξ(x1 − x2)
= ξ(|x1 − x2|)



sometimes written in 
dimensionless form 

Perturbation statistics: power spectrum 

power spectrum is the Fourier analogue of 
the correlation function 

definition of 
power spectrum 



The importance of 2-pt statistics 

Because the central limit theorem implies that a density 
distribution is asymptotically Gaussian in the limit where the 
density results from the average of many independent 
processes; and a Gaussian is completely characterised by its 
mean (overdensity=0) and variance (given by either the 
correlation function or the power spectrum) 



Do 2-pt statistics tell us everything? 

Credit: Alex Szalay 

Same 2pt, different 3pt 



Correlation function vs Power Spectrum 

The power spectrum has the advantage 
that different modes are uncorrelated (as a 
consequence of statistical homogeneity). 

The power spectrum and correlation function contain the same 
information; accurate measurement of each give the same 
constraints on cosmological models. 

Both power spectrum and correlation function 
can be measured relatively easily (and with 
amazing complexity) 

Models tend to focus on the power 
spectrum, so it is common for 
observations to do the same ... 
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Why is there structure? 

Inflation (a period of rapid growth of the early  
Universe driven by a scalar field) was postulated to solve 
some serious  problems with “standard” cosmology: 

•  why do causally disconnected regions appear to have the 
same properties? – they were connected in the past 

•  why is the energy density of the Universe close to critical 
density? – driven there by inflation 

• what are the seeds of present-day structure? - Quantum 
fluctuations in the matter density are increased to 
significant levels 

€ 

P(k) = kn

€ 

(n ≈ 1)



Evolution of the power spectrum after inflation 

Inflation 

linear growth 
independent of scale 

Non-linear 

Transfer function Matter/Dark energy 
domination 

(comoving coordinates) 



Matter P(k) depends on inflation 

€ 

P(k) = kn

€ 

(n ≈ 1)



The transfer function depends on the composition of the matter (CDM, 
baryons, neutrinos, etc.)  

An important scale is the Jeans Length which is the scale of fluctuation 
where pressure support equals gravitational collapse, 

where cs is the sound speed of the material, and ρ is its density.  

“F=ma” for perturbation  growth 

depends on Jeans scale 

Jeans length 

€ 

λJ =
cs
Gρ

€ 

δ
..

= (gravity− pressure)δ



Transfer function evolution 

in radiation dominated Universe, pressure support means 
that small perturbations cannot collapse (large Jeans 
scale).  Jeans scale changes with time, leading to smooth 
turn-over of matter power spectrum. Cut-off dependent 
on matter density times the Hubble parameter Ωmh. 
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The power spectrum turn-over 

varying the matter density 
times the Hubble constant 

Amplitude of effect depends on 
matter density – how long 
before matter-radiation equality 



The effect of neutrinos 

Δ2(k) = k3/2π2 P(k) 



Baryon Acoustic Oscillations (BAO) 

To first approximation, BAO 
wavelength is determined by the 
comoving sound horizon at 
recombination    

comoving sound horizon ~110h-1Mpc,  
BAO wavelength 0.06hMpc-1    

(images from Martin White) 

varying the 
baryon fraction 



Relationship between CMB and LSS power spectra 



The shape of the power spectrum 

credit: VIRGO consortium 
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The evolution of the scale factor 

If we observed the comoving power 
spectrum directly, we would not 
constrain evolution (except through 
linear growth – see later) 

However, we measure galaxy 
redshifts and angles and infer 
distances 



The power spectrum as a standard ruler 

CREDIT: WMAP & SDSS websites 
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The power spectrum as a standard ruler 
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BAO as a standard ruler 

Changes in cosmological model 
alter measured BAO scale 
(∆dcomov) by: 

Radial direction 

(evolution of Universe) 

Angular direction 

(line of sight) 

This is just the Alcock-Paczinski 
effect for small-scale 
perturbations  

Gives rise to the 
“rings of power” 

Hu & Haiman 2003, astro-ph/0306053 



BAO as a standard ruler 

If we are considering radial and angular 
directions using randomly orientated 
galaxy pairs, we constrain (to 1st order) 

BAO position (in a redshift slice) 
therefore constrains some multiple 
of 

Varying rs/DV 

Changes in cosmological model 
alter measured BAO scale 
(∆dcomov) by: 

Radial direction 

(evolution of Universe) 

Angular direction 

(line of sight) 



Why BAO are a good ruler 

Damping factor 

Observed power 

Linear BAO 

Observed BAO 

(no change in position) 

Need sharp features in P(k) or correlations to change BAO position 

Eisenstein, Seo & White 2006, astro-ph/0604361 
Percival et al. 2007, astro-ph/0705.3323  

Blin =
P (k)lin
P̄ (k)lin

Bobs =
P (k)obs

P̄ (k)obs
= g(k)Blin + [1− g(k)]

g(k) =
b2(k)P̄ (k)lin

P̄ (k)obs



Do BAO evolve? 

Can make a perturbative treatment of (CDM+baryon) fluid system 

+++= )3()2()1( δδδδ

（e.g., Suto & Sasaki 1991) 

Based on field-theoretical approach, 

Crocce & Scoccimarro (2006ab,2007) 

infinite class of perturbative corrections at all orders. 
Standard PT calculation can be improved by re-summing an 

Related works:  McDonald, Matarrese & Pietroni, Valageas, Matsubara (‘07) 

revise this term 



Going to 2nd order … 

At second order we get mode 
mixing, which causes shifts in 
the power spectrum BAO 
peaks 

Shifts are <1%, and can be 
calculated 

Crocce & Scoccimarro 2007; astro-ph/0704.2783 

Not important for current 
data, but need to be included 
for future analyses 



Using the full power spectrum as a ruler  

Nishimichi et al. 2008; astro-ph/0810.0813 
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Spherical perturbation leading to linear growth 

homogeneous dark energy 
means that this term 
depends on scale factor of 
background 

“perfectly” clustering dark 
energy – replace a with ap 

cosmology equation 

Consider homogeneous spherical perturbation 
– evolution is “same” as “mini-universe” 

Overdense perturbation 
Radius ap 

Background 
Radius a 



Spherical perturbation leading to linear growth 

definition of δ 

to first order in perturbation radius 
(linear approximation) 

gives 

can also be derived 
using the Jeans equation 

only has this form if the dark 
energy does not cluster – derivation 
of equation relies on cancellation in 
dark energy terms in perturbation 
and background 

cosmology equation 



Linear growth: EdS model 

For flat matter dominated model, 
this has solution  

Remember that the gravitational potential and the 
overdensity are related by Poisson’s equation 

Then the potential is constant: there is a delicate 
balance between structure growth and expansion 

Not true if dark energy or 
neutrinos 



Linear growth: general models 

For general models, denote linear 
growth parameter (solution to this 
differential equation)  

For lambda models, can use the approximation of 
Carroll, Press & Turner (1992) 

For general dark energy models, need to solve the 
differential equation numerically  



Linear vs Non-linear behaviour 

z=0 

z=1 

z=2 
z=3 
z=4 
z=5 

linear 
growth 

non-linear 
evolution 

z=0 

z=1 

z=2 
z=3 
z=4 
z=5 

large scale power 
is lost as fluctuations 
move to smaller scales 

P(k) calculated from Smith et al. 2003, MNRAS, 341,1311 fitting formulae  

Cannot easily measure growth directly  
from galaxy surveys as degenerate  
with galaxy bias 



Peculiar velocities 

All of structure growth happens because of peculiar velocities 

Initially distribution of 
matter is approximately 
homogeneous (δ is small) 

Final distribution is 
clustered 



Linear peculiar velocities 

Consider galaxy with true spatial position x(t)=a(t)r(t), then differentiating 
twice and splitting the acceleration d2x/dt2=g0+g into expansion (g0)and 
peculiar (g) components, gives that the peculiar velocity u(t) defined by 
a(t)u(t)=dx/dt satisfies 

In conformal units, the continuity and Poisson equations are  

Look for solutions of the continuity and Poisson 
equations of the form u=F(a)g 

The peculiar gravitational acceleration is 

So, for linearly evolving potential, u and g are in same direction  



Linear peculiar velocities 

Solution is given by 

where 

Zeld’ovich approximation: mass simply propagates 
along straight lines given by these vectors  

The continuity equation can be rewritten 

So the power spectrum of each component of u is given by 

k-1 factor shows that velocities come from larger-scale perturbations than density field 



Peculiar velocity observations 

Obviously, can only hope to measure radial 
component of peculiar velocities 

To do this, we need the redshift, and an independent measure of 
the distance (e.g. if galaxy lies on fundamental plane). Can then 
attempt to reconstruct the matter power spectrum 

The 1/k term means that the velocity field probes large scales, 
but does directly test the matter field. However, current 
constraints are poor in comparison with those provided by 
other cosmological observations 

So peculiar velocities constrain f : can we 
measure these directly?  



redshift-space distortions 

•  Estimate distances from 
redshifts (i.e. velocities) 
•  Peculiar velocities (velocities 
in addition to Hubble flow) 
misinterpreted as distance 
shifts 
•  Coherent shifts can affect      
2-pt functions 

Motion of galaxies is independent  
of galaxy properties – galaxies act  
as test particles in flow of matter 



what do linear z-space distortions measure? 

Kaiser 1987, MNRAS, 227, 1  

Galaxy-galaxy power  

Galaxy-velocity divergence cross power 

Velocity-velocity power 

Linear growth rate 

µ = cos(α)
θ = ∇ · u



The break-down of the linear model 

•  Real-Redshift space mapping 
–  Kaiser formula first order in δ and θ 
–  on small scales, we need 2nd and 3rd order (δ, θ cross) terms 
–  assumes irrotational velocity field 

•  Non-linear density field evolution 
–  Pgg breaks from linear behaviour (small scale, late time) 

•  Non-linear velocity field evolution 
–  Pθθ breaks from linear behaviour (small scale, late time) 
–  Fingers-of-God 

•  Assumes local, deterministic density bias 



The break-down of the linear model 

relative amplitude of 
density and velocity 
fields in simulations 

the breakdown of 
the Kaiser model 

Percival, White, 2008, astro-ph/0808.0003  



Further reading 

•   Dodelson, SLAC lecture notes. Available online at 
–  http://www-conf.slac.stanford.edu/ssi/2007/lateReg/program.htm 

•   Dodelson, “Modern Cosmology”, Academic Press 
•   Peacock, “Cosmological Physics”, Cambridge University Press 
•   Liddle & Lyth, “Cosmological Inflation and Large-Scale Structure”, 

Cambridge University Press 
•  Coles & Lucchin, “Cosmology: the origin and evolution of cosmic 

structure”, Wiley 
•   Eisenstein et al. 2006, astro-ph/0604361 (configuration space description of 

perturbation evolution) 
•   Percival 2005, astro-ph/0508156 (linear growth in general dark energy 

models) 
•  Hamilton 1997, astro-ph/9708102, redshift-space distortions review 
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translating to an overdensity field 

  
 

 

  
 

 
 

 

 

 
 

 

 

Create random catalogue with same 
spatial sampling as galaxies, but no 
clustering. α times as many objects. Use 
this to define the mean density 

Galaxies 
Randoms 

Survey 
volume 

overdensity 
field 



Modeling the angular galaxy mask 

SDSS DR5 mask  2dFGRS mask  



Modeling the angular galaxy mask 

•  completeness varies 
between plate overlap 
regions 

•  also need to consider 
region covered by 
parent catalogue 

•  both SDSS and 
2dFGRS use an 
adaptive tiling 
strategy 

•  BOSS will not use an 
adaptive system, but a 
fixed set of pointings 



Modeling the radial galaxy distribution 

•  for both the 2dFGRS and SDSS the 
magnitude limit changes with 
angular position, so the radial 
distribution of galaxies also 
changes 

•  Best approach – fit luminosity 
function (allowing for K+E 
corrections) 

•  possible to also just fit to redshift 
distribution in bins 

each angular 
position will 
have different 
magnitude limit 

can then convert 
to redshift 
distribution 



translating to an overdensity field 

  
 

 

  
 

 
 

 

 

 
 

 

 

Can define an overdensity field 

BUT: NEED TO TRANSLATE 
REDSHIFTS TO DISTANCES 

There are a number of ways of dealing with this: 
1.  assume one model. Check no significant change for nearby models  

P(k) shape only (Percival et al. 2001) 
2.  change the model used for each model to be tested (Percival et al. 2007) 
3.  allow for the effect of getting the cosmology wrong (Percival et al. 2009) 

Galaxies 
Randoms 

Survey 
volume 
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Measuring the power spectrum 

shot noise term – can 
be subtracted 

convolution with 
window function 

correction for not knowing 
true mean galaxy density 

Translate over-density field onto grid, 
take Fourier transform, and measure the 
spherically averaged amplitude of the 
Fourier modes squared (ie. the power 
spectrum) 

Feldman et al. (1994; ApJ 426, 23) 

Effect of grid assignment is 
convolution in configuration-
space, so multiplication in 
Fourier space easily included  



Correcting for galaxy bias 

In general, galaxy surveys do not produce 
homogeneous samples of galaxies 

Galaxy density varies 
systematically 

Galaxy luminosity 
varies systematically 



Correcting for galaxy bias 

In general, galaxy surveys do not produce 
homogeneous samples of galaxies 

Large-scales are only traced by more 
distant, intrinsically brighter galaxies, 
which are more clustered 
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Distribution of galaxy 
magnitudes in the SDSS 

With a bias model,  
1.  we can weight galaxies to remove such 

effects (Percival et al. 2004) 
2.  We can weight a measured power 

spectrum by an estimated median bias 
(Tegmark et al. 2006)   



Weighting the galaxies for number density and bias 

Now suppose each galaxy has a 
linear bias bi, the optimal weight is up-weights very biased 

galaxies, containing the 
most signal 

normalisation changes to 
match 

Depends on P(k) prior 

Low density – weight by galaxy 
High density – weight by volume 

Change occurs when statistical and 
volume errors are equal, when nP=1 

Feldman et al. (1994; ApJ 426, 23), Percival et al (2004; MNRAS) 



Anisotropic power spectrum 

Redshift-space distortions mean that the 
power spectrum is anisotropic 

Cannot easily measure P(k,µ) using a Fourier 
basis (except in the distant observer 
approximation). µ does not line up with 
cartesian grid 

Additionally, redshift-space distortions 
1.  Couple modes 
2.  Cause a complicated dependence on the 

anisotropic model 

P s
lin(k) = 〈|δg + µ2θ|2〉

= Pgg + 2µ2Pgθ + µ4Pθθ

= (1 + βµ2)2Pgg

= (b + fµ2)2Pmass



Modeling an anisotropic power spectrum 

Spherical 
Harmonics (θ,Φ) 

+ 
Spherical Bessel 
function (r) 

2d Fourier 
basis (x,y) 

+ 
1d Fourier 
basis (z) 

l=2,m=0 

l=2,m=1 

n=2 
r 

z 

advantage: radial/angular split – more 
matched to survey geometry, easily 
model redshift space distortions 

           advantage: simplicity, speed 

kx,ky 

kz 

e.g. Heavens & Taylor (1995: MNRAS, 275, 483) 



Power spectrum errors 

Following Feldman et al. (1994), the error on the power spectrum is 

S(k) ≡
(1 + α)

∫
d3r n̄(r)w2(r)eik·r

∫
d3r n̄2(r)w2(r)

Feldman et al. (1994; ApJ 426, 23), Cabre & Gaztanaga (2008; arXiv:0807.2460) 

For a sample with constant number density within a 
volume V, the error on the average power spectrum 
within a k-volume Vn reduces to  

This is often difficult to calculate analytically, so mock 
catalogues, or jack-knife errors are usually used  

〈δP̂ (k)δP̂ (k + δk)〉 = |P (k)Q(δk) + S(δk)|2

Q(k) ≡
∫

d3r n̄2(r)w2(r)eik·r
∫

d3r n̄2(r)w2(r)

〈P (k)P (k′)〉 =
1

VnV
[P (k)δD(k− k′) + 1/n̄]2



Fitting the power spectrum 

Linear model power spectrum 
calculated by CMBfast or CAMB 

S
anchez et al. (2008: arX

iv:0804.0233) 

Eisenstein & Hu (1998) fitting 
formulae do not give a P(k) with 
sufficient accuracy for current 
measurements 

Focus on modeling 
1.  non-linear matter evolution 
2.  galaxy bias 
3.  redshift-space effects 

Currently need simulations & 
analytic models to test these effects 

A
ngulo et al. (2008: arX

iv:0702543) 



Fitting to just the BAO 

Need to pull out the BAO from 
the power spectrum 

Model shape of power spectrum 
with smooth fit 
1.  polynomial 
2.  spline 
3.  ??? 

Less risk of systematic if allow 
P(k) shape to vary with BAO 
model. ie. fit power with varying 
shape model combined with BAO, 
rather than just the BAO. 

R
eid et al. (2009: arX

iv:0907.1659) 



Measuring the correlation function 

ξ =
DD

RR
− 1

ξ =
DD

DR
− 1

ξ =
DD

DR2
− 1

ξ =
DD − 2DR + RR

RR

DD = number of galaxy-galaxy pairs 
DR = number of galaxy-random pairs 
RR = number of random-random pairs 

Landy & Szalay (1993; ApJ 412, 64) 

Create random catalogue with same spatial 
sampling as galaxies, but no clustering 

Landy & Szalay (1993) considered 
noise from these estimators, and 
showed that this has the best noise 
properties  

  
 

 

  
 

 
 

 

 

 
 

 

 

Galaxies 
Randoms 

Survey 
volume 



Window functions and the integral constraint 

Landy & Szalay (1993; ApJ 412, 64) 

Correlation function calculation 
automatically takes care of window function: 
multiplicative contribution is removed by 
random catalogue 

Integral constraint is important:  

〈DD〉 = 〈RR〉 1 + ξ

1 + wV

wV =
∫

V
ξ(r, r′) dr dr′

This term is called the integral constraint and 
includes the fact that we estimate the mean 
galaxy density from the sample itself   

Landy & Szalay (1993; ApJ 412, 64) 

  
 

 

  
 

 
 

 

 

 
 

 

 

Galaxies 
Randoms 

Survey 
volume 



The anisotropic correlation function 

Peacock & 2dFGRS team (2001; Nature 410, 169) 
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Angular component of distance  

Quadrupole  component 
caused by linear redshift-
space distortions  

Fingers-Of-God increase 
pair count in radial 
direction 

Only signal in one 
quadrant, but often copied 
to cover full circle 



Modeling the correlation function 

Power spectrum and correlation function 
form a Fourier pair 

In absence of window function, power 
spectrum of different Fourier modes are 
uncorrelated. Not true for correlation 
function 

P (k) =
∫

ξ(r)eik·rd3r

ξ(r) =
∫

P (k)e−ik·r d3k

(2π)3

To solve this integral, we could adopt a spherical 
basis with z-axis (θ=0) along r, and line-of-sight in 
(y,z)-plane (i.e. Φlos=0). 

P s(k) = (1 + βµ2)2P r(k)
e−ik·r = rk cos(θ)

µ = cos(φ) sin(θ) sin(θlos) + cos(θ) cos(θlos)



Modeling the correlation function 

Hamilton (1992; ApJ 412, 64) 

Legendre polynomial expansion  

Correlation function 
moments 

We see that the primary effect is the addition 
of a quadrupole moment 

Correlation function even changes when 
µ=0, so not just flattening 

Inverse Laplacian  

ξs(r) = [b + f(∂/∂z)2(∇2)−1]2ξ(r)
ξs(r) = ξ0(r)L0(µ) + ξ2(r)L2(µ) + ξ4(r)L4(µ)

ξ0(r) = (b2 +
2
3
bf +

1
5
f2)ξ(r)

ξ2(r) = (
4
3
bf +

4
7
f2)[ξ(r)− ξ̄(r)]

ξ4(r) =
8
35

f2[ξ(r) +
5
2
ξ̄(r)− 7

2
¯̄ξ(r)]

ξ̄(r) =
3
r3

∫ r

0
ξ(r′)r′2 dr′

¯̄ξ(r) =
5
r5

∫ r

0
ξ(r′)r′4 dr′

L0 = 1
L2 = (3µ2 − 1)/2
L4 = (35µ4 − 30µ2 + 3)/8



modeling redshift-space distortions in ξ  

Q(s) =
ξ2(s)

ξ0(s)− (3/s2)
∫ s
0 ξ0(s′)s′2 ds′ Q(s) =

4
3β + 4

7β2

1 + 2
3β + 1

5β2

METHOD 1: Measure Q, and relate to β 

METHOD 2: Estimate real-space ξ from projected ξ, 
        and relate to average redshift-space ξ  

Ξ = 2
∫ ∞

σ

rξ(r) dr

(r2 − σ2) 1
2

ξ = − 1
π

∫ ∞

r

(dΞ(σ)/dσ)dσ

(r2 − σ2) 1
2

ξ(s)
ξ(r)

= 1 +
2β

3
+

β2

5

METHOD 3:Model full anisotropic correlation 
function 



modeling redshift-space distortions in P(k)  

P̂ (k) =
7
48

[
5(7P0 + P2)−

√
35(35P 2

0 + 10P0P2 − 7P 2
2 )1/2

]

P! ≡
2! + 1

2

∫ +1

−1
dµ P s(k, µ)L!(µ)

P2(k)
P0(k)

=
(4/3)β + (4/7)β2

1 + (2/3)β + (1/5)β2

METHOD 1: Perform Legendre polynomial expansion of anisotropic 
power spectrum, and calculate quadrupole  

METHOD 2: calculate mix of monopole and quadrupole. This 
removes the bias dependence and measure the matter velocity power 
spectrum (on large scales)  

Percival & White, 2008, astro-ph/0808.0003  



Measuring the velocity power spectrum 

On large-scales, the primary systematic is a 
possible velocity-bias … 

Although galaxy velocities will trace those of the 
mass, the distribution does not have to 
(e.g. Percival & Schafer 2008, MNRAS 385, L78) 

Percival & White, 2008, astro-ph/0808.0003  

P̂ (k) =
7
48

[
5(7P0 + P2)−

√
35(35P 2

0 + 10P0P2 − 7P 2
2 )1/2

]

This plane-parallel approximation works on 
scales k < 0.1hMpc-1 



Beating the cosmic variance limit 

McDonald & Seljak, astro-ph/0808.1101  

x 

δ gal sample 1 

gal sample 2 

mass 

If we have 2 samples of galaxies (in 
real space) with different deterministic 
biases,  

accuracy of b1/b2 measurement only 
depends on shot noise 

In redshift-space this result generalizes to 

giving b1/b2, f/b1, and f/b2  limited by 
only shot noise 

δ1 = b1δmass, δ2 = b2δmass

δ1 = (b1 + fµ2)δmass, δ2 = (b2 + fµ2)δmass

Allows us to use non-radial modes to 
“extract” information about f2P(k)mass 

Does not affect errors on the 
power spectrum shape. 



redshift-space distortions vs weak lensing 

redshift-space distortions weak lensing 
velocity & distortions depends on mass lensing potential depends on mass 

two galaxies at same location have same 
redshift distortion 

two galaxies at same location have same 
lensing distortion 

tests temporal metric fluctuations tests temporal and spatial metric 
fluctuations 

velocity-bias 
 - galaxy velocities not Poisson sampling 
of mass 

intrinsic alignments 
  - original galaxy shapes depend on 
lensing potential  

science vs money? 
  - need spectra 
  - with deterministic bias, direct probe of 
fluctuations in all directions 
  - for high galaxy density, limited by 
cosmic variance 

science vs money? 
  - need careful imaging  
  - 1-2% projection effect, but tests 
fluctuations in all directions 
  - for (very) high galaxy density, limited 
by cosmic variance 



Lecture outline 

•  Measuring the over-density field  
–  Angular & radial mask 
–  Random catalogues 

•  Measuring 2-pt statistics 
–  the power spectrum 
–  the correlation function 
–  redshift-space distortions 

•  Fisher matrices and predictions 
–  background 
–  future surveys 

•  Putting it all together 
–  parameters choices 
–  the MCMC technique 



Fisher matrix introduction  

Θ = (θ1, θ2, ..., θn)

X = (x1, x2, ..., xn)

L(X|Θ)

Fij ≡
〈

∂2L
∂θi∂θj

〉
L ≡− lnL

Suppose we have a model with 
parameters 

That we wish to constrain with data 

The Likelihood of the data given a model is  

Fisher matrix is given by        where                                       

The Cramer-Rao inequality shows that the Fisher matrix gives the best model 
error we can hope to achieve                                       

Sir Ronald Aylmer Fisher  
(1890-1962) 

∆θi ≥ (Fii)−1/2



Gaussian Fisher matrix for P(k) 

Suppose that the Likelihood has a multi-variate Gaussian distribution, with 
<x>=µ, and covariance matrix C 

Fij =
1
2

[
C−1 ∂C

∂θi
C−1 ∂C

∂θj

]
+

∂µT

∂θi
C−1 ∂µ

∂θj

For the galaxy power spectrum, we can use the Feldman et al (1994) result, to 
approximate the power spectrum covariance in band powers with k-space volume Vn as 

〈P (kn)P (km)〉 = 2
P (kn)P (kn)
VnVeff(kn)

δD(km − kn)

Veff(k) ≡
∫ [

n̄(r)P (k)
1 + n̄(r)P (k)

]2

d3r

Fij =
1
2

∫
d3k

(2π)3

(
∂ lnP

∂θi

) (
∂ lnP

∂θj

)
Veff(k)

Which gives a Fisher matrix, that can be written (if we now integrate over many 
small shells Vn) 

Tegmark (1997; PRL, 79, 3806) 



Gaussian Fisher matrix for δ(k) 

As an alternative to the power spectrum, we can work with δ(k) as our 
“data”, and covariance (as before) 

〈δ(k)δ(k′)〉 =
1

VnV
[P (k)δD(k− k′) + 1/n̄]

This gives exactly the same Fisher matrix as we recovered using P(k) 
in band powers as our data (exercise!) 



Redshift-space distortion Fisher matrix 

White, Song & Percival, 2009, MNRAS, 397, 1348  

Code to estimate errors on fσ8 from the 
Fisher matrix formalism is available 
from: 

http://mwhite.berkeley.edu/Redshift


For our set of parameters to test, we have 
freedom to choose any of the physical 
processes that contribute to the clustering 

For example, we can single out the 
parameters controlling the anisotropic 
normalization of the power spectrum 
within a background cosmology, 
fσ8 and bσ8 



BAO Fisher matrix 

Seo & Eisenstein, 2007, astro-ph/0701079  

Code to estimate these errors from the 
Fisher matrix formalism is available 
from: 
http://cmb.as.arizona.edu/~eisenste/
acousticpeak/bao_forecast.html


For our set of parameters to test, we have 
freedom to choose any of the physical 
processes that contribute to the clustering 

It is also possible to isolate the BAO, and 
fit for H(z) and DA(z), which cause radial 
and angular distortions 



Linking z-space distortions and BAO? 

Ballinger, Peacock & Heavens 1999, MNRAS, 282, 877  

We should allow for the coupling between the redshift-space distortions and the 
geometrical squashing caused by getting the geometry wrong. Effects are not 
perfectly degenerate 

Fit to redshift-space distortions cannot 
mimic geometric squashing 

Linear redshift-
space distortions 

Geometric 
squashing 



Present/Future BAO Surveys 

•   SDSS-II (present - 2008) 
–  800,000 z<0.5 spectra over 7500deg2 

•   Wiggle-Z (present - 2010) 
–  400,000 z~0.75 spectra over 1000deg2 

•   Baryon Oscillation Spectroscopic Survey  
 (BOSS: 2009-2014) 

–  1,500,000 z~0.6 spectra over  
 10,000deg2 +QSOs 

•   Dark Energy Survey (DES: 2010-2015) 
–  5000deg2 multi-colour imaging 

 survey on Blanco 4m + VISTA 
–  photo-z for 300,000,000 galaxies 

•   Plus: VST-Atlas, SUMIRE , SKA, HETDEX, LAMOST, LSST, Pan-
STARRS, PAU, Euclid/JDEM, + other MOS plans? 



DETF Figure-of-merit is area of 1σ 
confidence region for 2-parameter DE 
model, with equation of state: 

Predicted Dark Energy Constraints 

Survey DETF figure 
of merit 

Current + Planck 53.7 

+ BOSS (1 year) 79.7 

 + BOSS (5 year) 109.9 

+ DES (BAO only) 75.1 

+ Wiggle-Z 71.5 

w(z) = w0 + (1− a)wa

= wp + wa(ap − a)



BOSS: A next generation BAO experiment 

•  SDSS finished its original,  legacy 
survey in 2008 

•  Spectroscopic survey role 
identified as remaining world-
class (7.5deg2 field-of-view, even 
though 2.5m telescope) 

•  SDSS Imaging detects and can 
distinguish luminous red galaxies 
out to z<0.7 (e.g. AGES, 2SLAQ) 

•  Obvious next step: large survey 
for LRGs to measure BAO for 
z<0.7 

•  Can also pick up high-z BAO signal 
in Ly-α forest in QSO spectra 

•  Very efficient: each spectra gives 
skewer though density field, rather 
than single point 



BOSS: Summary 

•  Ω = 10,000deg2 

•  Selected from 11,000deg2 of imaging 
–  8,500deg2 in North 
–  2,500deg2 in South (fill in SDSS-II Southern stripes) 

•  LRGs : 150/deg2, z ~ 0.1 – 0.7 (direct BAO) 
•  1% dA, 1.8% H at z ~ 0.35, 0.6 
•  QSOs : 20/deg2, z ~ 2.1 – 3.0 (BAO from Ly-α forest) 
•  1.5% dA, 1.2% H at z ~ 2.5 
•  Cosmic variance limited to z ~ 0.6 : as good as LSS mapping will get with 

a single ground based telescope 
•  Leverage existing SDSS hardware & software where possible 
•  Sufficient funding is in place and project is underway 
•  www.sdss3.org/boss  



Lecture outline 

•  Measuring the over-density field  
–  Angular & radial mask 
–  Random catalogues 

•  Measuring 2-pt statistics 
–  the power spectrum 
–  the correlation function 
–  redshift-space distortions 

•  Fisher matrices and predictions 
–  background 
–  future surveys 

•  Putting it all together 
–  parameters choices 
–  the MCMC technique 



Model parameters (describing LSS & CMB) 

content of the 
Universe 

total energy density  
 Ωtot (=1?) 

matter density 
 Ωm 

baryon density 
 Ωb  

neutrino density 
 Ωn (=0?) 

Neutrino species 
 fn 

dark energy eqn of state 
 w(a) (=-1?)  

or  w0,w1 

perturbations after 
inflation 

scalar spectral index 
 ns (=1?) 

normalisation 
 σ8 

running 
       a = dns/dk (=0?) 
tensor spectral index 

 nt (=0?) 
tensor/scalar ratio 

 r (=0?) 

evolution to  
present day 
Hubble parameter 

 h 
Optical depth to CMB 

 τ 

parameters usually  
marginalised and  
ignored 
galaxy bias model 

 b(k) (=cst?) 
or  b,Q 
CMB beam error 

 B 
CMB calibration error 

 C 

Assume Gaussian, adiabatic fluctuations 



WMAP3 parameters used 



Multi-parameter fits to multiple data sets  

•   Given WMAP3 data, other data are used to break CMB degeneracies 
and understand dark energy 

•   Main problem is keeping a handle on what is being constrained and 
why 

–  difficult to allow for systematics 
–  you have to believe all of the data! 

•   Have two sets of parameters 
–  those you fix (part of the prior) 
–  those you vary 

•   Need to define a prior 
–  what set of models 
–  what prior assumptions to make on them (usual to use uniform 
priors on physically motivated variables) 

•   Most analyses use the Monte-Carlo Markov-Chain technique 



Markov-Chain Monte-Carlo method 

 MCMC method maps the likelihood surface by building a chain of parameter 
values whose density at any location is proportional to the likelihood at that location p(x) 

x 

-ln(p(x)) 

an example chain 
starting at x1 
A.) accept x2 
B.) reject x3 
C.) accept x4 

CHAIN: x1, x2, x2, x4, ... 

x1  x2   x4     x3 

A B 

C 

given a chain at parameter x, and a 
candidate for the next step x’, then 
x’ is accepted with probability 

1                    p(x’) > p(x) 

p(x’)/p(x)            otherwise 

for any symmetric proposal distribution 
q(x|x’) = q(x’|x), then an infinite number  
of steps leads to a chain in which the 
density of samples is proportional to p(x). 



MCMC problems: jump sizes 

q(x) too broad 

    chain lacks mobility 
    as all candidates are 
    unlikely 

x 

-ln(p(x)) 

x1 

x 

-ln(p(x)) 

x1 

q(x) too narrow 

    chain only moves 
    slowly to sample all 
    of parameter space 



MCMC problems: burn in 

Chain takes some time to reach a point where the initial position chosen has no influence 
on the statistics of the chain (very dependent on the proposal distribution q(x) ) 

2 chains – jump size 
adjusted to be large  
initially, then reduce 
as chain grows 2 chains – jump size 

too large for too long, so  
chain takes time to find  
high likelihood region 

Approx. end of burn-in 

Approx. end of burn-in 



MCMC problems: convergence 

How do we know when the chain has sampled the likelihood surface sufficiently well, 
that the mean & std deviation for each parameter are well constrained? 

Gelman & Rubin (1992) convergence test: 

Given M chains (or sections of chain) of  
length N,  Let W be the average variance 
calculated from individual chains, and B be the 
variance in the mean recovered from the M 
chains. Define 

Then R is the ratio of two estimates of the 
variance. The numerator is unbiased if the 
chains fully sample the target, otherwise it is an 
overestimate. The denominator is an 
underestimate if the chains have not converged. 
Test: set a limit R<1.1 

R =
N − 1

N
+

1
W

(
1 +

B

N

)



Resulting constraints 

Tegmark et al, 2006, arXiv:0608632 



Further reading 

•  Power spectrum measurement 
–  Feldman, Kaiser & Peacock (1994), ApJ 426, 23 
–  Hamilton (1997), astro-ph/9708102 

•  Correlation function measurement 
–  Landy & Szalay (1993), ApJ 412, 64 

•  Fisher matrix 
–  BAO: Seo & Eisenstein (2003), ApJ, 598, 720 
–  z-space distortions: White, Song & Percival (2009), MNRAS, 397, 1348   

•  Combined constraints (for example) 
–  Sanchez et al. (2005), astro-ph/0507538 
–  Tegmark et al. (2006), astro-ph/0608632 
–  Spergel et al. (2007), ApJSS, 170, 3777 



Current Galaxy Clustering Measurements 
and Cosmological Constraints 

Will Percival 
ICG, University of Portsmouth, UK 



Lecture outline 

•  review of 2-pt analyses from SDSS and 2dFGRS 
(apologies for incomplete & often biased nature) 
–  Ωmh constraints from P(k) shape 
–  BAO detection 

•  Latest SDSS DR7 analyses (by myself and collaborators) 
–  LRG P(k) 
–  BAO observations 
–  combination with WMAP data 



Percival et al. 2001, MNRAS, 327, 1297 

Analysis of the part-complete 2dFGRS 

Analysed the part-complete 
2dFGRS (147000 galaxies) 



Percival et al. 2001, MNRAS, 327, 1297 

Analysis of the part-complete 2dFGRS 

cosmological interpretation of 
wiggles requires high baryon 
fraction 

part complete 
2dFGRS 



Analysis of the SDSS DR2 main galaxies 

Tegmark et al. 2004, arXiv:0310725 

Analysed the SDSS ~DR2 main 
galaxy sample 



Analysis of the SDSS DR2 main galaxies 

Tegmark et al. 2004, arXiv:0310725 

Cluster collapsing, can 
be used to remove FOG 

Need to be very careful: 
power spectrum shape 
is quite sensitive to this 



Analysis of the SDSS DR2 main galaxies 

Tegmark et al. 2004, arXiv:0310725 

Need to remove the 
effect of choosing 
different galaxies to 
measure different scales 

Here, this was done by 
correcting the power 
spectrum after it was 
measured 



with complete survey, 
only one solution  
– high baryon solution 
has disappeared 

blue - 2001 
red   - final 

Cole et al. 2005, MNRAS, 362, 505 

Analysis of the final 2dFGRS sample 



Eisenstein et al., 2005, ApJ, 633, 560 

Again, CDM models fit the 
correlation function  
adequately well (although 
peak height is slightly too 
large) with (assuming ns=1, 
h=0.72) 

assuming Ωbh2 =0.024,   
Ωmh2 =0.133±0.011, 
Giving Ωb/Ωm= 0.18 

SDSS DR3 LRG Correlation Function analysis 



power spectrum shape constraints 

Fitting to the SDSS power spectrum 
By Tegmark et al. 2004 

Fitting to the 2dFGRS 
power spectrum by Cole 
et al. (2005), including 
bias model 



SURVEY publication redshifts method Wmh fb Wmh 
fb=0.17 

2dFGRS Percival et 
al.  2001 

166,490 Fourier 
analysis 

0.20  
± 0.03 

0.15 
± 0.07 

0.206 
± 0.023 

2dFGRS Percival et 
al.  2004 

142,756 Spherical 
Harmonics 

0.215 
± 0.035 

2dFGRS Cole et al. 
2005 

221,414 Fourier 
analysis 

0.168  
± 0.016 

0.185 
± 0.046 

0.172 
± 0.014 

SDSS Pope et al. 
2004 

205,484 KL analysis 0.264 
± 0.043 

0.286 
± 0.065 

0.207 
± 0.030 

SDSS Tegmark et 
al. 2004 

205,443 Spherical 
Harmonics 

0.225 
± 0.040 

SDSS 
LRGs 

Eisenstein et 
al 2005 

46,748 correlation 
function 

0.185 
± 0.015* 

*uses Wbh2=0.024, rather than fb=0.17 

Pre-2006 constraints from P(k) 



Spergel et al. 2006, astro-ph/0603449 

WMAP 3-year analysis found a discrepancy 



the problem is scale-dependent bias 

Percival et al. 2007, astro-ph/0608636 

non-linear behaviour depends on 
luminosity 

linear behaviour strongly depends 
on luminosity 



the problem is scale-dependent bias 

Sanchez & Cole 2007, arXiv:0708.1517 

By subdividing 2dFGRS into red and blue 
galaxies, Sanchez & Cole also concluded 
that differences with SDSS were caused 
by scale-dependent galaxy bias 



Modeling scale-dependent galaxy bias 

Quadratic (Seo & Eisenstein 2005) 

Bias in this context means relation between P(k)lin & P(k)obs 

shot noise change (Seljak 2001) 

Q model (Cole 2005) 

see review by Smith et al. 2007, astro-ph/0609547  

We really want a full model for galaxy formation 



Measuring scale-dependent galaxy bias 

Cresswell & Percival 2009, MNRAS 392, 682  

shot noise change (Seljak 2001) 

linear behaviour strongly depends 
on luminosity and colour 

As does the non-linear departure 
from the linear power spectrum  

Pg(k) = b2
linPlin(k) + P



Anisotropic ξ analysis of the SDSS DR3 LRGs 

Contours of  
SDSS LRG  
correlation  
function 
~DR3 sample 

Linear theory 
prediction 

Okumura et al., 2007, arXiv:0711.3640 



power spectrum analysis of SDSS DR4 LRGs 

Huetsi, 2005, arXiv:0512201 

Analysis of SDSS DR4 
LRG sample (approx ½ of 
final DR7 sample) shows 
strong oscillations, detected 
at 3.3σ 

BAO location is consistent 
with Eisenstein et al. 
analysis of DR3 



power spectrum analysis of SDSS DR4 LRGs 

Tegmark et al, 2006, arXiv:0608632 

Full analysis of SDSS DR4 
LRG and main galaxy samples 

Analysis included FOG 
compression, but shown by 
Reid et al. (2008; arXiv:
0811.1025) to be too agressive 



BAO of SDSS DR5 galaxies 

Percival et al, 2007a, arXiv:0608635 

Isolated BAO in power spectrum by 
dividing by a spline fit. Measured 
Ωm=0.256±0.027 for flat ΛCDM 
models 



Power spectrum of SDSS DR5 galaxies 

Percival et al, 2007a, arXiv:0608636 

Measured P(k) for SDSS DR5 and 
showed that the shape is strongly 
dependent on the range of scales fitted. 
Any derived shape constraints are 
almost completely degenerate with the 
galaxy bias model assumed 

0.01<k<0.06hMpc-1 

0.01<k<0.15hMpc-1 



modeling the distance-redshift relation 

Galaxy redshifts need to be converted to 
distances before BAO can be measured


Not a problem for small sets of models 
(1-2 parameters), but time consuming 
for more


Solve problem by parametrising 
distance-redshift relation by smooth fit: 
can then be used to constrain multiple 
sets of models


For SDSS+2dFGRS analysis, choose two 
modes at z=0.2 and z=0.35, for fit to DV




BAO from the 2dFGRS + SDSS DR5 

BAO detected at z~0.2 

BAO detected at z~0.35 

BAO from combined 
sample 

Percival et al., 2007, MNRAS, 381, 1053  



Discrepancy with ΛCDM? 

LRG BAO on too small 
scales: further away than 
expected, so more 
acceleration between 
z=0.2 and 0.35 

Distance ratio found is 
DV(0.35)/DV(0.2) = 1.812 ± 0.060 

CDM expects  
DV(0.35)/DV(0.2) = 1.67 

Discrepancy is 2.4σ  

Percival et al., 2007, MNRAS, 381, 1053  



Anisotropic ξ analysis of the SDSS DR6 LRGs 

Pixel size in this analysis 
means that the FOG signal 
is washed out 

The quadrupole signal 
from linear redshift-space 
distortions is clearly 
visible 

ξ(π=rparallel,σ=rperp) for 
LRG sample showing 
BAO ring 

Cabre & Gaztanaga, 2008, arXiv:0807.2460 
Gaztanaga et al., 2008, arXiv:0807.3551 



z-space distortions in the SDSS DR6 LRGs 

ξ!(s) =
2" + 1

2

∫ +1

−1
ξ(s, µ)P!(µ) dµ

Q(s) =
ξ2(s)

ξ0(s)− (3/s2)
∫ s
0 ξ0(s′)s′2 ds′

Q(s) =
4
3β + 4

7β2

1 + 2
3β + 1

5β2

Cabre & Gaztanaga, 2008, arXiv:0807.2460 

Use multipoles of ξ, and define 
the quadrupole Q(s)  

Using linear theory, and in the 
distant-observer approximation, 
these can be  related to 

Giving β=0.34±0.03 



Gaztanaga et al., 2008, arXiv:0807.3551 
Miralda-Escude, 2009, arXiv:0901.1219 

Radial BAO in the SDSS DR6 LRGs? 

Expected ξ 

radial slice through ξ(π=rparallel,σ=rperp) 
showing the “BAO feature” 

Measured ξ 

Miralda-Escude (2009) 
argue that the signal is 
consistent with 
correlated noise 



DR7 update on radial BAO signal 

Gaztanaga et al., 2008, arXiv:0807.3551 
Miralda-Escude, 2009, arXiv:0901.1219 

Expected ξ 

Measured DR6 ξ 

Measured DR7 ξ 

Change seen between 
analyses of SDSS DR6 and 
DR7 suggests a lot of the 
signal is due to noise 



SDSS DR7 LRG correlation function analysis 

Kazin et al., 2009, arXiv:0908.2598 

Find results consistent with DR3 
analysis, although with higher 
amplitude in the large-scale tail, also 
seen by Sanchez et al. (2009) 

From analysis of mock catalogues, 
show that there is a 10% chance that 
we would not see a peak 



BAO in the 3-pt 

Gaztanaga et al., 2008, arXiv:0807.2448 

δ1 

δ3 

δ2 

Q3 =
ξ3(r12, r23, r13)

ξ2(r12)ξ2(r23) + ξ2(r12)ξ2(r13) + ξ2(r23)ξ2(r13)

ξn ≡ 〈δ1δ2...δn〉

α 

Perturbation theory predicts that 
the 3-pt function, created by non-
linear gravitational infall, will be 
affected by the BAO feature 



Lecture outline 

•  review of 2-pt analyses from SDSS and 2dFGRS 
(apologies for incomplete & often biased nature) 
–  Ωmh constraints from P(k) shape 
–  BAO detection 

•  Latest SDSS DR7 analyses (by myself and collaborators) 
–  LRG P(k) 
–  BAO observations 
–  combination with WMAP data 



Cosmology from the SDSS DR7 LRG Clustering 

R
eid et al. (2009: arX

iv:0907.1659) 

Reid et al. (2009, arXiv:0907.1659) 

Plan to use all of our new 
knowledge about the effects and 
model the shape of the LRG power 
spectrum to constrain 
cosmological models 



step 1: FOG compression 

Tegm
ark et al. (2004, astro-ph/0310725) 

Reid et al. (2009, arXiv:0907.1659) 

Use an anisotropic FOF 
group finder with 
parameters derived 
from simulations to find 
halo centres. 

We therefore calculate 
the halo rather than 
LRG power spectrum  

Test cosmological constraints 
against residual velocity 
dispersion from LRGs in single 
halos that are not central 



step 2: model window, non-linearities, bias  

Reid et al. (2009, arXiv:0907.1659) 

Plin(k) from 
CAMB 

Pnw(k) no 
wiggles 

linear BAO damped BAO 

PDM(k) non-
linear DM 

Pdamp(k) full 
non-linear 

Phalo(k) halo power 
(inc bias nuisance) 

Phalo,win(k) convolve 
with window 



step 3: tests, tests, tests 

Reid et al. (2009, arXiv:0907.1659) 

Effect of changing the scalar 
spectral index ns on the primary 
constraints on Ωmh2 and DV 

ns=1.02 

ns=0.96 

ns=0.90 

Effect of changing the non-linear 
prescription 

DV constraints 
from BAO 

NL at fixed 
 cosmology 

NL model varies  
with cosmology 



BAO in SDSS DR7 + 2dFGRS power spectra 

•  Combine 2dFGRS, SDSS DR7 LRG and Main 
galaxy samples 

•  split into redshift slices and fit P(k) with model 
comprising smooth fit × BAO 

P
ercival et al. (2009: arX

iv:0907.1660) 
Percival et al. (2009, arXiv:0907.1660) 



Dealing with cosmological dependencies 

BAO position measured by fitting 
single measured P(k) calculated 
assuming a ΛCDM cosmology 

Percival et al. (2009, arXiv:0907.1660) 

A window function which depends on 
the model to be tested, is used to 
convolve the model power spectrum 
before testing against the data 

This includes the offset caused by the 
dilation of scale, and the broadening of 
the window caused by getting the 
cosmology to be tested wrong 



Is DV the correct parameter to constrain? 

Percival et al. (2009, arXiv:0907.1660) 

Test how well BAO position in 
different anisotropic cosmologies 
depends on DV ? 

Models with the same 
BAO position 

Models with constant DV 



Testing the errors 

Tests comparing parameters and errors recovered for mock data against the true 
cosmology, show we need to increase the errors. Gaussian realisations of power 
spectra show this is caused by the non-Gaussian nature of the Likelihood 

Percival et al. (2009, arXiv:0907.1660) 



BAO in SDSS DR7 + 2dFGRS power spectra 

•  results can be written as independent 
constraints on a distance measure and a tilt 
around this 

•  consistent with ΛCDM models at 1.1σ 
when combined with WMAP5 

•  Reduced discrepancy compared with DR5 
analysis 

–  more data 
–  revised error analysis (allow for non-Gaussian 
likelihood) 
–  more redshift slices analyzed 
–  improved modeling of LRG z-distribution 

rs(zd)/DV (0.275) = 0.1390± 0.0037 (2.7%)
DV (0.37)/DV (0.2) = 1.736± 0.065

Percival et al. (2009, arXiv:0907.1660) 



How to present BAO constraints? 

Anchor BAO at high redshift 
using the CMB? 

Include parameter dependencies 
from modeling the comoving 
sound horizon? 

Only consider ratios of BAO 
measurements, effectively forcing 
a cosmological model that lines 
up the BAO 

Percival et al. (2009, arXiv:0907.1660) 



Comparing P(k) constraints against different data 

ΛCDM models with curvature flat wCDM models 

Union supernovae 
WMAP 5year 

LRG halo P(k) shape + BAO 

R
eid et al. (2009: arX

iv:0907.1659) 

R
eid et al. (2009: arX

iv:0907.1659) 



Comparing BAO constraints against different data 

ΛCDM models with curvature flat wCDM models 

Union supernovae 
WMAP 5year 

SDSS BAO Constraint on rs(zd)/DV(0.275) 

P
ercival et al. (2009: arX

iv:0907.1660) 

P
ercival et al. (2009: arX

iv:0907.1660) 



Comparing BAO constraints against different data 

ΛCDM models with curvature flat wCDM models 

Union supernovae 
WMAP 5year 

SDSS BAO Constraint on rs(zd)/DV(0.2) & rs(zd)/DV(0.35)  

P
ercival et al. (2009: arX

iv:0907.1660) 

P
ercival et al. (2009: arX

iv:0907.1660) 



LRG halo P(k) + CMB + SN model constraints 

SDSS + WMAP5 
Union supernovae + WMAP5 

SDSS + Union supernovae + WMAP5 

w-CDM models with curvature 

R
eid et al. (2009: arX

iv:0907.1659) 

R
eid et al. (2009: arX

iv:0907.1659) 



BAO + CMB + SN model constraints 

SDSS + WMAP5 
Union supernovae + WMAP5 

SDSS + Union supernovae + WMAP5 

w-CDM models with curvature 

P
ercival et al. (2009: arX

iv:0907.1660) 

P
ercival et al. (2009: arX

iv:0907.1660) 



Parameter constraints 

Reid et al. (2009, arXiv:0907.1659) 



Parameter constraints 

Percival et al. (2009, arXiv:0907.1660) 



Further reading 

•  Previous analysis references listed through talk  
•  SDSS DR7 analyses 

–  LRG P(k), Reid et al. (2009, arXiv:0907.1659) 
–  BAO from combined sample, Percival et al. (2009, arXiv:0907.1660) 
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