Transition from Eyeball to Snowball Driven by Sea-ice Drift on Tidally Locked Terrestrial Planets

Presenter: JUN YANG
Abstract:
Tidally locked terrestrial planets around low-mass stars are the prime targets for future atmospheric characterizations of potentially habitable systems, especially the three nearby ones–Proxima b, TRAPPIST-1e, and LHS 1140b. Previous studies suggest that if these planets have surface ocean they would be in an eyeball-like climate state: ice-free in the vicinity of the substellar point and ice-covered in the rest regions. However, an important component of the climate system–sea ice dynamics has not been well studied in previous studies. A fundamental question is: would the open ocean be stable against a globally ice-covered snowball state? Here we show that sea-ice drift cools the ocean’s surface when the ice flows to the warmer substellar region and melts through absorbing heat from the ocean and the overlying air. As a result, the open ocean shrinks and can even disappear when atmospheric greenhouse gases are not much more abundant than on Earth, turning the planet into a snowball state. This occurs for both synchronous rotation and spin-orbit resonances (such as 3:2). These results suggest that sea-ice drift strongly reduces the open ocean area and can significantly impact the habitability of tidally locked planets.