Patterns in Multiplanet Systems as Fossils of Planet Formation

Exoplanets Beyond the Snowline — University of Tokyo

Questions we'd like to answer

- What properties are common in multiplanet systems?
- What do common properties teach us about planet formation?

What properties are common in multiplanet systems?

California-Kepler Survey

New exoplanet science from Keck/HIRES Spectra of 1305 Kepler Planet-hosting Stars

The California Kepler Survey yielded precise parameters for

909 transiting planets in355 multiplanet systems

STAR					M_{\star} [so	blarl
K00117		• • • •			1.25	
K00152					1.24	
K00132			00		1.24	
K02732					1.24	
K02732					1.24	
K00707		• • • • • •	_		1.19	
		• • •	•			
K00351		00	0 00		1.12	
K00671		0 0 0 0			1.1	
K01060		0 0 0 0			1.08	
K00510		• • • •)		1.08	
K02722		0 0 00 0			1.07	
K01930		000	•		1.06	
K02220	•				1.03	
K00939	•	000			1.03	
K01860		• • • •			1.01	
K02433		• •	• •		1.0	
SOL			۰		1.0	
K01432		• • • •	>		0.99	
K00157		00 00	• •		0.99	
K00232		0 0 0	•		0.98	
K00408		• • • •			0.98	= 1800
K00116		° O °	•		0.96	1600
K00935		• • • •			0.96	
K01052		0 0	• •		0.96	1400
K02169		• • • • •			0.94	1200
K00435		• • • •	•		0.94	1000
K00070		0 0 0 0	•		0.94	1000
K00880		• • •	\circ		0.93	800
K04032		0 0 00			0.92	600
K00841		0 0 0		•	0.89	400
K00907		• • •	•		0.88	
K00720		• • • •			0.87	200 T
K00623					0.86	$T_{ m eq}$ [K]
K00869		• • • •			0.86	
K00520		· · · ·	•		0.86	
K00505		0 00 0	•		0.85	
K01278		0000			0.85	
K01364					0.85	
K01563		0 0 0 O			0.84	
K01151		0 0 0 0 0			0.84	
K01306	٥	00 0			0.82	
K02029					0.81	
K00082					0.81	4 0
K00700		0 0 0			0.81	• 1 R _⊕
K00733		0000			0.79	• 3 R_{\oplus}
K00490		000			0.78	\bullet 10 R_{\oplus}
K01557	0	000			0.78	
K00500	0	0 0 00			0.75	
K01567		0000			0.74	
K00701					0.68	
K03158				-	0.67	
K00719		· · · · ·			0.61	
					0.01	
0.01	0.	03 0.10 a [AU	0.32 J]	1.00	3.16	

Do you see any patterns?

Do you see any patterns?

Planets in the same system have similar sizes

CKS V. "Peas in a Pod" Weiss et al. (in review)

The sizes of pairs of planets in the same system are correlated.

Test Null Hypothesis with Bootstrap Trials

Observed system:

Possible bootstrap system:

Star, number of planets, orbital periods are preserved Planet size is drawn at random Only detectable planets are counted

One example bootstrap trial: no correlation between planet sizes 16.0 Pearson R=0.04 p = 0.48388.00 **Outer planet size** 4.00 R_{j+1} [Earth] 2.00 1.00 y = x0.50 CKS Err. Bootstrap 0.25 🛌 0.25 0.50 1.00 2.00 4.00 8.00 16.0

 R_j [Earth] We Inner planet size

The sizes of pairs of planets in the same system are correlated.

1000 bootstrap trials: the planet size correlation is not reproduced with a null hypothesis + detection biases

Do you see any patterns?

Planets in the same system have regular spacing

The orbital period ratios of planets in the same system are correlated.

One example bootstrap trial: no correlation between planet spacings

1000 bootstrap trials: the period ratio correlation is not reproduced with a null hypothesis + detection biases

Do you see any patterns?

Is there a connection between planet size and spacing?

The spacing and size of a pair of planets are correlated

Estimated mutual Hill radii for all planet pairs

Masses estimated with

- Weiss & Marcy 2014
- Weiss et al. 2013

Do mutual Hill radii affect stability?

How close can two planets be?

What do these patterns teach us about planet formation?

Theories of oligarchic growth

Lissauer & Stewart (1993):

The self-limiting nature of runaway growth strongly implies that massive protoplanets form at regular intervals in semimajor axis.

Kokuba & Ida (1998):

We have shown the oligarchic growth of protoplanets in the post-runaway stage. Protoplanets with the same order masses with the orbital separation larger than about $5r_{\rm H}$ is the inevitable outcome of planetary accretion in the post-

Questions we have addressed

• What properties are common in multi-planet systems?

sizes

separations

masses

similar within a planetary system

• What do common properties teach us about planet formation?

Similar masses & separations were predicted in oligarchic growth