Patterns in Multiplanet Systems as Fossils of Planet Formation

Lauren Weiss

Trottier Postdoctoral Fellow

Université ${ }^{\text {Un }}$
de Montréal

$$
\begin{aligned}
& 1.01 \\
& 1.0 \\
& 1.0 \\
& 0.99 \\
& 0.99
\end{aligned}
$$

Exoplanets Beyond the Snowline - University of Tokyo

Questions we'd like to answer

- What properties are common in multiplanet systems?
- What do common properties teach us about planet formation?

What properties are common in multiplanet systems?

California-Kepler Survey
New exoplanet science from Keck/HIRES Spectra of 1305 Kepler Planet-hosting Stars

The California Kepler Survey yielded precise parameters for

909 transiting planets in 355 multiplanet systems

Do you see any patterns?

K02220	$0-0-0$			1.03
K00939	$\bigcirc \bigcirc$			1.03
K01860	$\bigcirc 000$			1.01
K02433		-		1.0
SOL		- - .	-	1.0
K01432				0.99
K00157	00000	\bigcirc		0.99
K00232	- 000			0.98
K00408	- 000			0.98
K00116	- 0 - 0			0.96
K00935	-	\bigcirc		0.96
K01052	$\bigcirc 000$			0.96
K02169	\bigcirc			0.94
K00435	$\bigcirc \bigcirc \bigcirc \bigcirc$			0.94
K00070	$\bigcirc \circ 0-0$			0.94
K00880	$\bigcirc \bigcirc \bigcirc$			0.93
K04032	- ○ oo			0.92
K00841	$\bigcirc \bigcirc$	-		0.89
K00907	- 0	-		0.88
K00720	- 0 O			0.87
K00623	-0-0			0.86
K00869	$\bigcirc 000$			0.86
K00520	- 000			0.86
K00505	- 000	\bigcirc		0.85
K01278	- 0 -			0.85
K01364	$\bigcirc \bigcirc \bigcirc 00$			0.85
K01563	$\bigcirc \bigcirc \bigcirc \bigcirc$			0.84
K01151	$\bigcirc \circ \bigcirc 00$			0.84

Do you see any

Planets in the same system have similar sizes

K02220	000			1.03
K00939	0000			1.03
K01860	$\bigcirc 000$			1.01
K02433	- 00	\bigcirc		1.0
SOL		- -	-	1.0
K01432	$\bigcirc 00$			0.99
K00157	00000	\bigcirc		0.99
K00232	- 0 - 0			0.98
K00408	- 000			0.98
K00116	- 0 - 0			0.96
K00935	-	\bigcirc		0.96
K01052	$\bigcirc \bigcirc \bigcirc 0$			0.96
K02169	0001			0.94
K00435	$\bigcirc \bigcirc \bigcirc \bigcirc$			0.94
K00070	$\bigcirc \circ 0$ -			0.94
K00880	$\bigcirc \bigcirc \bigcirc$			0.93
K04032	0000			0.92
K00841	$\bigcirc \bigcirc$	-		0.89
K00907	- 0	-		0.88
K00720	- 000			0.87
K00623	000			0.86
K00869	$\bigcirc 000$			0.86
K00520	- 000			0.86
K00505	$\bigcirc 0$	\bigcirc		0.85
K01278	$0-0$			0.85
K01364	0001			0.85
K01563	$\bigcirc \bigcirc \bigcirc \bigcirc$			0.84
K01151	- 0 O 0			0.84

The sizes of pairs of planets in the same system are correlated.

Test Null Hypothesis with Bootstrap Trials

Observed system:

Possible bootstrap system:

Star, number of planets, orbital periods are preserved Planet size is drawn at random
Only detectable planets are counted

One example bootstrap trial: no correlation between planet sizes

The sizes of pairs of planets in the same system are correlated.

1000 bootstrap trials: the planet size correlation is not reproduced with a null hypothesis + detection biases

The orbital period ratios of planets in the same system are correlated.

One example bootstrap trial: no correlation between planet spacings

1000 bootstrap trials: the period ratio correlation is not reproduced with a null hypothesis + detection biases

The spacing and size of a pair of planets are correlated

Is size-spacing pattern related to mutual Hill radii?

Spacing of Pair

Estimated mutual Hill radii for all planet pairs

Masses estimated with

- Weiss \& Marcy 2014
- Weiss et al. 2013

Weiss+ (in review)

Do mutual Hill radii affect stability?

10-50 mutual Hill radii apart

10-50 mutual Hill radii apart
>20 mutual Hill radii apart

Hill instability does not affect the smallest planets

Weiss+ (in review)

How close can two planets be?

Weiss+ (in review)

What do these patterns teach us about planet formation?

Theories of oligarchic growth

Lissauer \& Stewart (1993):
The self-limiting nature of runaway growth strongly implies that massive protoplanets form at regular intervals in semimajor axis.

Kokuba \& Ida (1998):
We have shown the oligarchic growth of protoplanets in the post-runaway stage. Protoplanets with the same order masses with the orbital separation larger than about $5 r_{\mathrm{H}}$ is the inevitable outcome of planetary accretion in the post-

Kepler multis = aged oligarchs?

Planets in the same system have similar sizes and masses

Questions we have addressed

- What properties are common in multi-planet systems?

- What do common properties teach us about planet formation?

Similar masses \& separations were predicted in oligarchic growth

