Size Distribution of Ice-mantled Grains and Its Effect on Dust Growth

Hidekazu Tanaka (Tohoku University)

Numerical Simulation of Dust Collision

Evolution of Cosmic Dust

1. Grain formation around Stars

- 2. Silicate grains (& graphite) in molecular clouds
 - Size distribution $N(a) da = A a^{-3.5} da$ (MRN 1977)
 - Upper limit ~ 0.1 μm (which determines total grain mass)

small grains

large grain

Ice mantle

Silicate core

- 3. Ice-mantled grains in Cloud Cores
 - Is their size distribution MRN? (This work)
 - Chemical reaction at grain surface

4. Dust aggregates in Protoplanetary Disks Smaller initial grains make the aggregates more sticky!

Growth Equation of Ice-mantled grains

- Assumption: Temperature is low enough to neglect evaporation.
- Growth Equation of Ice-mantled grains (a : grain radius)

$$\frac{da}{dt} = \beta n_{\rm H2O} v_{\rm H2O} \frac{m_{\rm H2O}}{\rho_{\rm ice}}$$

- $n_{\rm H2O}$: number density of H₂O mol.
- $m_{\rm H2O}$: molecular mass of H₂O
- $v_{\rm H2O}$: thermal velocity of H₂O
- $\rho_{\rm ice}$: density of ice
- β : sticking probability

Thickness of ice-mantle is NOT dependent on size of silicate cores!

- LARGE silicate cores have relatively THIN ice-mantle.
- SMALL silicate cores have relatively THICK ice-mantle.

Size Distribution of Ice-mantled Grains

Ice is condensed mainly on small silicate cores!

Summary on Ice-mantled Dust Model

Numerical Simulation of dust collisions

• fragmentation velocity $v_{\rm crit} \propto a_0^{-5/6}$ (a_0 : monomer radius)

Wada+09,13

Monomer size distribution used in this simulation
Two size components

	radius	total mass ratio	
large monomers	0.1 <i>μ</i> m	1	
small monomers	0.025 <i>μ</i> m	2	

- Number of monomers in two aggregates = 1.5x10⁶
- 200 runs for various collision speeds and impact parameters

Numerical Simulation of dust collisions

Small ice-mantled grains make dust aggregates more sticky!

Summary

- 1. Small ice-mantle grains are formed (~0.02 μ m)
 - Ice is condensed mainly at small silicate cores.
 - Grain size distribution is "two size components".
 - A great increase in total grain surface area
- 2. Numerical simulation of aggregate collisions with two size components of ice-mantled grains Small ice-mantled grains makes dust aggregates more sticky!

Future work:

Effect on the extinction curves of the inter-stellar dust grains