Satellitesimal Formation with Collisional Growth and Radial Drift of Dust Particles in Steady Circumplanetary Disks

Yuhito Shibaike¹

Satoshi Okuzumi¹, Takanori Sasaki², Shigeru Ida¹

1. Tokyo Institute of Technology, 2. Kyoto University

2017 November, University of Tokyo

Satellites in the solar system

Mars Asteroid Ida

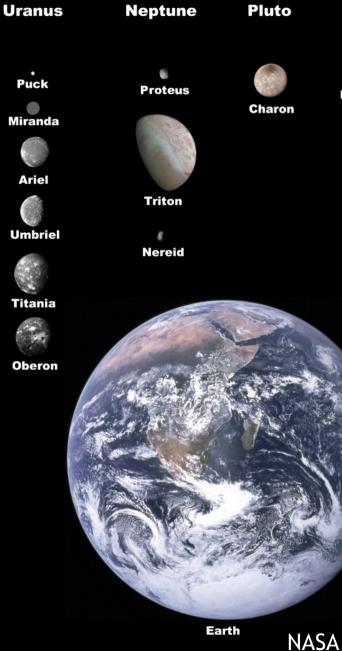
Phobos

Moon

Deimos

- Ice and rock \bullet
- Orbits are on \bullet the same plane

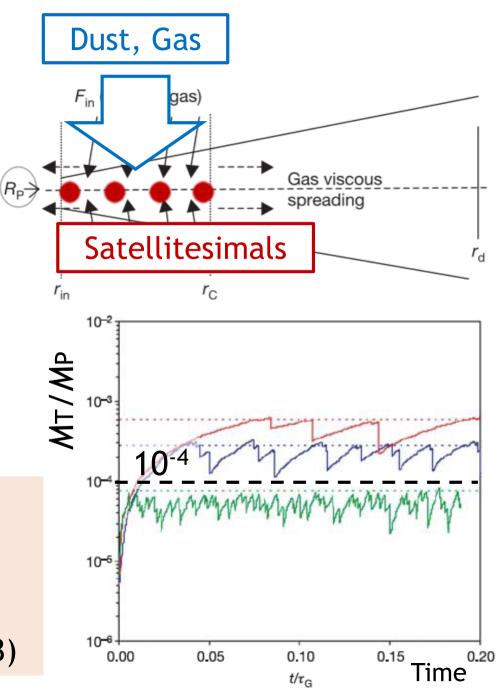
They formed in a circumplanetary disk around Jupiter


Titan

Hyperion

lapetus

Phoebe



Eris

1

Satellite formation in CPDs

- $\checkmark\,$ Canup and Ward (2006) etc.
 - Gas and dust are supplied from the high altitude of CPD
 They assumed the dust particles grow rapidly to satellitesimals
 - Satellitesimals grow to satellites tgrowth VS. tTypel $\rightarrow MT/MP=10^{-4}$
 - ✓ How to form satellitesimals?
 - In-situ formation (Shibaike et al. 2017)
 - Planetesimals capture (e.g. Fujita et al. 2013)

Satellitesimal formation via collisional growth of dust particles

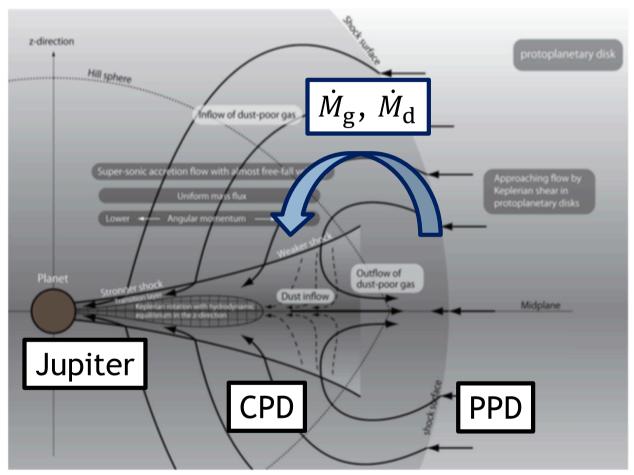
- Dust particles grow larger by pairwise collisions
- \checkmark Dust particles drift to the central planet

*t*growth VS. *t*drift

✓ Aim of this work

Calculate the collisional growth and drift of dust particles \downarrow Dust particles can grow to satellitesimals or not?

Grow


Drift

Head wind

Dust (Kepler)

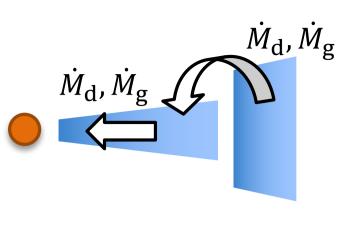
(Sub-Kepler)

Model: Dust and gas inflow

- ✓ Gas is supplied from the high altitude of CPD
 - M_g: Gas inflow mass flux
- ✓ Dust flows to CPD with gas
 - M_d: Dust inflow mass flux

(Tanigawa et al. 2012)

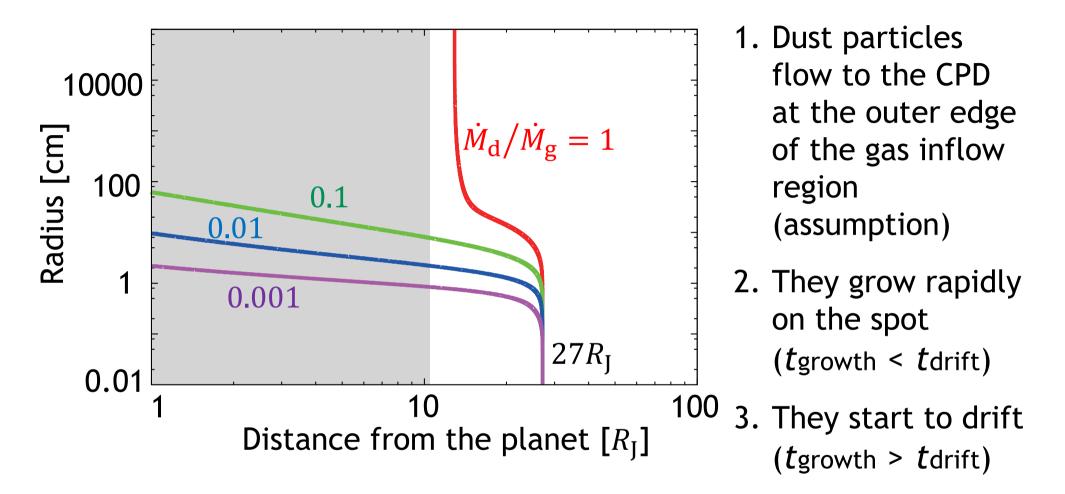
Dust to gas inflow mass flux ratio: $\dot{M}_{\rm d}/\dot{M}_{\rm g} = 1, 0.1, 0.01$, and 0.001


Model

- ✓ Steady condition
- ✓ Viscous accretion disk
- ✓ No local structure
- ✓ Viscous heating
- Simple dust collisional growth model
 - Representative size
 - Perfect sticking
 - Compact dust (↔ fluffy dust)
 - Supply at the outer edge of the gas inflow region
- \checkmark Calculate the size(mass) and surface density of dust particles at each r
 - Equation of continuity

$$\dot{M}_{\rm d} = 2\pi r |v_{\rm r}| \Sigma_{\rm d}$$

Collisional growth


$$v_{\rm r} \frac{\partial m_{\rm d}}{\partial r} = \frac{2\sqrt{\pi}{R_{\rm d}}^2 \Delta v_{\rm dd}}{H_{\rm d}} \Sigma_{\rm d}$$

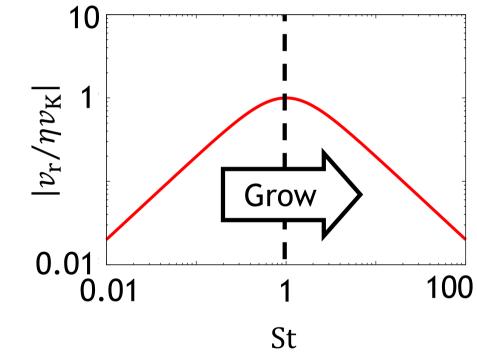
Results: Radius

4. They stop drifting and grow to satellitesimals $(\dot{M}_d/\dot{M}_g = 1)$ or they drift to the planet $(\dot{M}_d/\dot{M}_g = 0.001, 0.01, 0.1)$

Condition for satellitesimal formation

✓ Stokes number St(≔ Size)

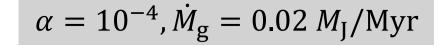
• St

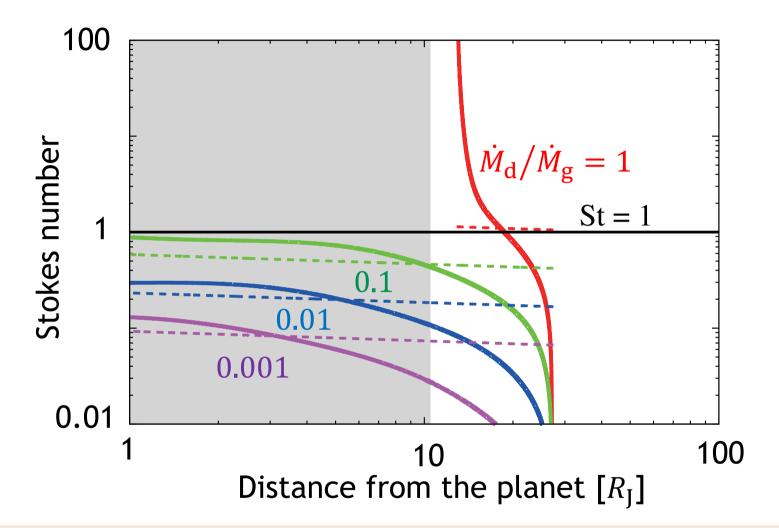

St =

• Determining the motion of dust particles in gases

= (Stopping time)/(Kepler time)

 $rac{8}{3C_{
m D}}rac{
ho_{
m int}R_{
m d}}{
ho_{
m g}\Delta v_{
m dr}}$


✓ Drift speed v_r becomes the fastest when St = 1


Dust particles have to grow to over St = 1to form satellitesimals

Results: Stokes number

8

- Dust particles grow to satellitesimals only when St > 1
- The $\dot{M}_{\rm d}/\dot{M}_{\rm g}$ is larger, the Stokes number is larger
- Satellitesimals can form only when $\dot{M}_{\rm d}/\dot{M}_{\rm g} = 1$

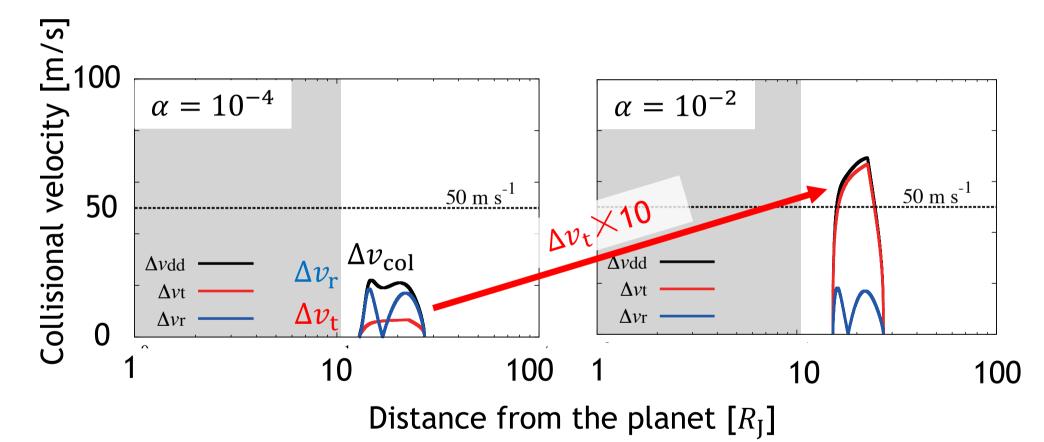
Effects of $\dot{M}_{\rm d}/\dot{M}_{\rm g}$

✓ When $r \to 0$ the Stokes number can be approximated as

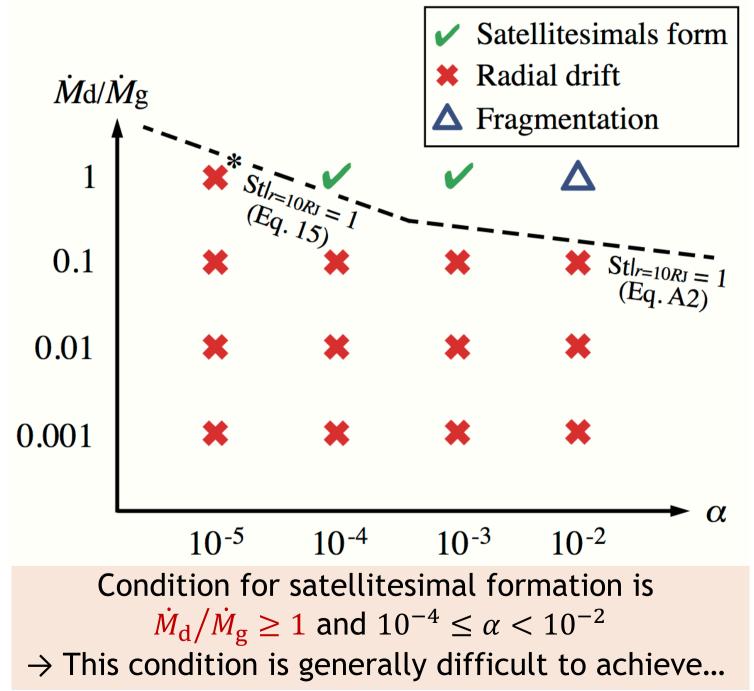
St
$$\approx 1.2 \left(\frac{\dot{M}_{\rm d}}{1}\right)^{2/5} \left(\frac{\alpha}{10^{-4}}\right)^{1/5} \times \left(\frac{T}{160 \text{ K}}\right)^{-2/5} \left(\frac{M_{\rm cp}}{1 M_{\rm J}}\right)^{2/5} \left(\frac{r}{10 R_{\rm J}}\right)^{-2/5}$$

$$\dot{M}_{d}/\dot{M}_{g}$$

- > St $\propto (\dot{M}_{\rm d}/\dot{M}_{\rm g})^{2/5}$
- \dot{M}_{d} \uparrow , Σ_{d} \uparrow , Collision rate \uparrow , St \uparrow
- $\dot{M}_{g} \downarrow$, $\Sigma_{g} \downarrow$, St \uparrow


The $\dot{M}_{\rm d}/\dot{M}_{\rm g}$ is larger, the Stokes number is larger

Fragmentation


$$\dot{M}_{\rm d}/\dot{M}_{\rm g} = 1$$
, $\dot{M}_{\rm g} = 0.02 M_{\rm J}/{\rm Myr}$

 ✓ Fragmentation occurs when the collisional velocity is faster than 50 [m/s] (Wada et al. 2009)

When $\alpha = 10^{-2}$, the collisional velocity is faster than 50 m/s \rightarrow Difficult to form satellitesimals

Condition for satellitesimal formation

Summary

- \checkmark We examined if dust particles can grow to satellitesimals
 - We calculated the size and surface density of dust particles at each r (distance from Jupiter)
 - We changed the dust-to-gas inflow mass flux ratio and strength of turbulence
- \checkmark We found that...
 - The $\dot{M}_{\rm d}/\dot{M}_{\rm g}$ is larger, the Stokes number is larger
 - When $\alpha = 10^{-2}$, fragmentation occurs
 - Condition for satellitesimal formation in steady CPDs is $\dot{M}_{\rm d}/\dot{M}_{\rm g} \ge 1$ and $10^{-4} \le \alpha < 10^{-2}$
 - This condition is generally difficult to achieve

