Accretion and Dust Evolution in the HL Tau Disk

MHD disk winds might be the main driver of disk accretion. See Hasegawa, Okuzumi, Flock, & Turner (2017), ApJ, 845, 31!

(a)	ALMA CO(1-0)-redshifted HST R-band ALMA CO(1-0)-blueshifted	
XZ Tau	HL Tau	
	LkHa358	

ALMA Partnership et al. (2015)

Satoshi Okuzumi (Tokyo Tech)

Yasuhiro Hasegawa, Mario Flock, Neal Turner (JPL/Caltech), Munetake Momose (Ibaraki Univ.), Hidekazu Tanaka (Tohoku Univ.), Hiroshi Kobayashi, Sin-iti Sirono (Nagoya Univ.), Kota Higuchi, Masamichi Nagao (Tokyo Tech)

Importance of the Snow Line in Dust Evolution

silicate + ice

Importance of the Snow Line in Dust Evolution

silicate + ice

Location where particle stickiness changes

(particles coated by water ice is sticky. See Wada et al, 2009; Gundlach & Blum 2015)

- Vapor re-condensation

(Stevenson & Lunine 1988; Ros & Johansen 2013; Schoonenberg & Ormel 2017)

- Piling-up of silicates (Saito & Sirono 2011; Ida & Guillot 2011)
- Sintering (Sirono 1999,2011a,b; Okuzumi et al. 2016; Sirono & Ueno 2017)

Snow Lines

abundances of major volatiles in comets (Mumma & Charnley 2011)

What are the Origins of the Dust Rings/Gaps?

- Planets? (e.g., Dipierro+15; Kanagawa+15; Jin+16; Bae+17)
- Instabilities? (e.g., Takahashi+14; Lorén-Aguilar+15)
- Condensation near the snow lines? (Zhang+15)
- Sintering near the snow lines? (this work)

Sintering

Sintering is a grain fusion phenomenon that happens when the temperature is *slightly below* the sublimation/melting temp.:

silica aggregate before sintering

after sintering (1473K, 1hr)

Sintered Aggregates are Brittle

(Sirono 1999; Sirono & Ueno 2017)

Example: aggregates of 0.1-µm icy grains, colliding at 20m/s

w/o sintering

w/ sintering

disruption at $\gtrsim 50$ m/s (see also Wada et al. 2009)

disruption at $\geq 20 \text{ m/s}$

Minor Volatiles Can Cause Sintering

The Sintering Zones

Sirono (2011b); Okuzumi et al. (2016)

snow line: where ice sublimates

sintering zone: where icy aggregates get sintered (sintering timescale < collision timescale)</pre>

1D Dust Evolution Model with Sintering

Okuzumi et al. (2016)

Consider aggregates of silicates and ices (H₂O, CO, CO₂, CH₄, C₂H₆, NH₃, H₂S; Mumma & Charnley 2011)

 V_{frag} (normal) = 50 m/s ($a_{\text{monomer}}/0.1\mu$ m)^{-5/6} (Wada et al. 2009) V_{frag} (sintered) = 20m/s ($a_{\text{monomer}}/0.1\mu$ m)^{-5/6} (Sirono & Ueno, 2017)

Detailed Comparison with HL Tau

The sintering model reproduces :
 ✓ Positions of major rings (within an accuracy of <30%)
 ✓ Radial distribution of mm spectral index α = dlnl_ν/dlnv

A New Particle-size Constraint from mm Polarization

 ALMA has revealed that HL Tau's mm polarization pattern changes drastically with wavelength (Kataoka et al. 2017; Stephens et al. 2017)

Stephens et al. (2017)

- One possibility: the size of dust particles producing the polarized emission is ~ 100 μ m (~ $\lambda/2\pi$) (Kataoka et al. 2017).
- This size is much smaller than expected for sticky H₂O particles $(\sim 1 \text{mm...1cm at } 100 \text{ au}) \Rightarrow \text{Strong turbulence}?$

Weak Turbulence in the HL Tau Disk

Pinte et al. (2016)

The well-defined morphology of the rings indicates that the dust is concentrated at the midplane:

This strongly suggests that disk turbulence is very weak: $(\alpha \equiv D_{\text{diff}}/c_sH_{\text{gas}} \leq 10^{-3} \dots 10^{-4} \text{ in the outer disk})$ Then why the particles in the outer disk are so small?

Evidence for Non-sticky CO₂ Mantle?

- Outside the CO₂ snow line , icy grains might be covered by CO₂ ice.
- Recent experiments (Musiolik et al. 2016a,b) confirmed that CO₂ ice is less sticky than H₂O ice.
- Reason: CO₂ is non-polar (having zero dipole moment)

Question: Can this effect explain the small particle size in the outer part of the HL Tau disk?

Including the non-stickiness of CO₂ Mantle

Snapshot at 1.4 Myr for $\alpha_{diff} = 10^{-4}$ (Okuzumi & Higuchi, in prep.)

As expected, particle size of ~ 0.1 mm is realized in the outer disk
If α_{diff} is low (~ 10⁻⁴), dust settling is also realized.

Including the non-stickiness of CO₂ Mantle

Okuzumi & Higuchi, in prep.

With CO₂ mantle, the dust gap just interior to the CO₂ snow line tends to become deep, because the small particles outside the CO₂ snow line slowly drift in.

Summary: A Picture of HL Tau form the Snow-Line Scenario

 Dust ring formed through H₂O sintering Dust rings formed through sintering
 Additional fragmentation caused by CO₂ mantle (origin of polarization pattern)

Particles grow efficiently thanks to sticky H2O mantle ⇒ A sweet spot for planetesimal formation via dust coagulation?