Aeereﬂen and Dust Evolutlon in the HL Tau Disk

MHD disk winds might be the main driver of disk accretion.
See Hasegawa, Okuzumi, Flock, & Turner (2017), ApJ, 845, 31!
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Importance of the Snow Line in Dust Evolution

(H.O) Snhow Line

silicate
silicate + ice



Importance of the Snow Line in Dust Evolution

“radial drift”
(H,0O) Snow Line -

silicate
silicate + ice

- Location where particle stickiness changes
(particles coated by water ice is sticky. See Wada et al, 2009; Gundlach & Blum 2015)

. 4 - (Stevenson & Lunine 1988; Ros & Johansen 2013;
Vapor re condensatlon Schoonenberg & Ormel 2017)

< P|||ng-up of silicates (Saito & Sirono 2011: Ida & Guillot 2011)

= Sintering (Sirono 1999,2011a,b; Okuzumi et al. 2016; Sirono & Ueno 2017)



Snow Lines

abundances of major volatiles
in comets (Mumma & Charnley 2011)
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What are the Origins of the Dust Rings/Gaps?

HL Tau TW Hya HD163296

(ALMA Partnership et al. 2015) (Andrews et al. 2016) (Isella et al. 2016)

e Planets? (e.g., Dipierro+15; Kanagawa+15; Jin+16; Bae+17)
e Instabilities? (e.g. Takahashi+14; Lorén-Aguilar+15)

e Condensation near the snow lines? (Zzhang+15)

e Sintering near the snow lines? (this work)



Sintering

Sintering is a grain fusion phenomenon that happens when
the temperature is slightly below the sublimation/melting temp.:

silica aggregate before sintering after sintering (1473k, 1hr)

Poppe (2003)



Sintered Aggregates are Brittle

(Sirono 1999:; Sirono & Ueno 2017)

Example: aggregates of 0.1-um icy grains, colliding at 20m/s

w/o0 sintering w/ sintering
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disruption at = 50 m/s

disruption at = 20 m/s
(see also Wada et al. 2009)



volatile
heck

Minor Volatiles Can Cause Sintering
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T Brittle
(Sirono & Ueno, 2017)
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Even minor volatiles (of volume faction ~1%)
are able to produce thick necks!



The Sintering Zones

Sirono (2011b); Okuzumi et al. (2016)
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sintering zone:

snow line: where icy aggregates get sintered
where ice sublimates  (sintering timescale < collision timescale)



1D Dust Evolution Model with Sintering

Okuzumi et al. (2016)

Consider aggregates of silicates and ices
(H20, CO, CO2, CH4, CoHs, NH3, H2S; Mumma & Charnley 2011)

& to star

o aggregate
CH4 snow line gas disk

CH4 sintering zone CO snow line

CO sintering zone

Vfrag (normal) =50 m/S (amonomer/0.1 Hm)_5/6 (Wada et al. 2009)
Vfrag (Sintered) = 20m/s (@monomer/0.1umM)=>/¢ (Sirono & Ueno, 2017)
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Detailed Comparison with HL Tau

Model (w/ sintering) ALMA Observation
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The sintering model reproduces :
v Positions of major rings (within an accuracy of <30%)
v’ Radial distribution of mm spectral index a = din/,/dInv



A New Particle-size Constraint from mm Polarization

e ALMA has revealed that HL Tau's mm polarization pattern
changes drastically with wavelength (kataoka et al. 2017; Stephens et al. 2017)

3.1 mm (ALMA Band 3) 1.3 mm (ALMA Band 6 870 um (ALMA Band 7)

circular along minor axis
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Kataoka et al. (2017) Stephens et al. (2017)

e One possibility: the size of dust particles producing the
polarized emission is ~ 100 um (~A\/2m) (Kataoka et al. 2017).

e This size is much smaller than expected for sticky H,O particles
(~ Tmm...1cm at 100 au) = Strong turbulence?

Polarized 870 pm intensity (m)Jy beam-1)

14



Weak Turbulence in the HL Tau Disk

Pinte et al. (2016)

The well-defined morphology of the rings indicates
that the dust is concentrated at the midplane:

ALMA image model image (no settling) model image (with settling)
ALMA Band 6+7 no settling himm = 0.70 au
ass =3 1074
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This strongly suggests that disk turbulence is very weak:
(a = Dyisf/csHgas = 103 ... 10-% in the outer disk)

Then why the particles in the outer disk are so small?
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Evidence for Non-sticky CO, Mantle?

e Outside the CO; snow line, icy grains might be covered by CO;ice.

e Recent experiments (Musiolik et al. 2016a,b) confirmed that CO,
ice is less sticky than H>O ice.

e Reason: CO; is non-polar (having zero dipole moment)
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Question: Can this effect explain the small particle size
in the outer part of the HL Tau disk?
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Including the non-stickiness of CO>, Mantle

Snapshot at 1.4 Myr for Agdiff = 10~% (Okuzumi & Higuchi, in prep.)
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e As expected, particle size of ~ 0.1 mm is realized in the outer disk
o If agitf is low (~ 10-%), dust settling is also realized.




Including the non-stickiness of CO>, Mantle

Okuzumi & Higuchi, in prep.

ALMA Observation La0-tuned La0-tuned w/ CO, mantle
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With CO; mantle, the dust gap just interior to the CO;
snow line tends to become deep, because the small
particles outside the CO; snow line slowly drift in.




Summary: A Picture of HL Tau form the Snow-Line Scenario

CHs CO

star H,O0 NH;CO: 2H6

: a ‘ ‘
ring gap i gap gap gap

ring ring ring
S A —-
e Dust ring formed ® Dust rings formed through sintering

through H;O sintering e Additional fragmentation caused by
CO, mantle (origin of polarization pattern)

3
Particles grow efficiently thanks to sticky H20 mantle

=> A sweet spot for planetesimal formation
via dust coagulation?
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