Impact of pebble formation and migration on observable gas-phase volatiles on both sides of the CO snowline



#### 10th RESCEU/Planet<sup>2</sup> Symposium Tokyo, November 29, 2017

Sebastiaan Krijt (Hubble Fellow at The University of Chicago) + Fred J Ciesla, Kamber Schwarz, Edwin A Bergin



#### **The Protoplanetary Disk**









(see also Aikawa & Herbst 1999, Eistrup et al. 2017, Yu et al. 2017)

### **The Protoplanetary Disk**



### **The Protoplanetary Disk**





(See also Meijerink et al. 2009, Kama et al. 2016, Xu et al. 2016, ...)



How does large scale pebble formation & migration effect CO abundances; both in the midplane (where planets form) and the disk atmosphere (which we observe)?

(and do we see evidence for these features in nearby disks?)

### Approach

Imagine a disk with a known bulk gas & temperature distribution













# **Initial conditions**

- At *t=0*, everything is in equilibrium
- No pebbles exist (yet)





# Model M1a

- Vapor allowed to diffuse & freeze-out
- Small dust is **not** allowed to move or form pebbles





# Model M1b

- Like M1a, but now small dust grains can move radially & vertically
- Pebble formation not included





# Model M1c

- Like M1b, but now pebbles can form (their sizes are limited by the `bouncing barrier')
- However, pebbles are **not** allowed to move





## Model M1e

- Like M1c, but now pebbles can
  move settle & drift radially
- (They also grow by colliding amongst themselves)





### **Comparison after 1Myr**

Pebbles alter the gas-phase CO/H<sub>2</sub> in complex and time-dependent way, usually resulting in depletion of CO in the warm molecular layer, and enhancement inside the midplane snowline



### **Comparison after 1Myr**

60

40

20

0

20

40

60

z/au

 $z/\mathrm{au}$ 

M1

VMyr = 1.0

**∞** 100 μm

**o** 1 mm

80

**(()** 1 cm

Pebbles alter the gas-phase CO/H<sub>2</sub> in complex usually resulting in depletion of CO in the warm enhancement inside the midplane snowline



Schwarz et al. 2016:

r/au



#### **Next steps:**

By comparing different models to a suite of multi wavelength observations (CO isotopologues, mm continuum, scattered light, ...) we hope to constrain magnitude & timing of large scale pebble migration

#### **Comments/help welcome!**

# Summary / outlook

Our model can resolve time-dependent evolution & interaction of different gas-phase and solid components (CO molecules, dust, pebbles) in PP disks



#### Next steps:

By comparing different models to a suite of multi wavelength observations (CO isotopologues, mm continuum, scattered light, ...) we hope to constrain magnitude & timing of large scale pebble migration

#### **Comments/help welcome!**