Precise Demographics of the Kepler Planets

Andrew Howard, Professor of Astronomy, Caltech
10th RESCEU/Planet² Symposium - Planet Formation around Snowlines
November 28, 2017

On behalf of:
Geoffrey Marcy, John Johnson, Erik Petigura, Howard Isaacson, Phillip Cargile, Leslie Hebb, BJ Fulton, Lauren Weiss, Tim Morton, Josh Winn, Leslie Rogers, Evan Sinukoff, Lea Hirsch, and lan Crossfield

Precise Demographics of the Kepler Planets

Andrew Howard, Professor of Astronomy, Caltech
10th RESCEU/Planet² Symposium - Planet Formation around Snowlines
November 28, 2017

On behalf of:
Geoffrey Marcy, John Johnson, Erik Petigura, Howard Isaacson, Phillip Cargile, Leslie Hebb, BJ Fulton, Lauren Weiss, Tim Morton, Josh Winn, Leslie Rogers, Evan Sinukoff, Lea Hirsch, and lan Crossfield

California-Kepler Survey Keck/HIRES Spectra of 1305 KOls

Petigura, Howard, Marcy, et al. AJ (2017)
CKS I: Spectroscopic Properties of 1305 Planet-Host Stars From Kepler
Johnson, Petigura, Fulton, et al. AJ (2017)
CKS II: Precise Physical Properties of 2025 Kepler Planets and Their Host Stars
Fulton, Petigura, Howard, et al. AJ (2017)
CKS III: A Gap in the Radius Distribution of Small Planets
Petigura, Marcy, Winn, et al. AJ (submitted)
CKS IV: Metal-rich Stars Host a greater Diversity of Planets
Weiss, Marcy, Petigura, et al. AJ (submitted; arXiv:1706.06204)
CKS V: Peas in a Pod: Planets in a Kepler Multi-planet System are
Similar in Size and Regularly Spaced

Papers Using CKS Dała (ło date)

Winn, Sanchis-Ojeda, Rogers, et al. AJ (2017)
Absence of a metallicity effect for ultra-short-period planets
Winn, Petigura, Morton, et al. AJ (in press, arXiv:1710.04530) Constraints on Obliquities of Kepler Planet-Hosting Stars

Berger, Howard, Boesgaard AJ (submitted) Identifying Young Kepler Planet Host Stars from Keck-HIRES Spectra of Lithium

Planet size distribution

Mass \& Radius

Planet size distribution

Know Thy Star

Photometry

- Homogeneous (Huber+14)
- R_{\star} good to ~40\%
- In 2017, majority of planet-hosting stars had photometric constraints only

Spectroscopy

- R_{\star} as good as $\sim 10 \%$
e.g. Kepler-93b (Ballard+14); R_{\star} to $\sim 1 \%$

The California-Kepler Survey

CKS-I: Petigura, Howard et al. (2017)

- Pls: Andrew Howard, Geoff Marcy, John Johnson
- 50 Keck nights (2011-2015)
- HIRES spectra of 1305 stars hosting 2025 planet candidates
- Core sample
- Magnitude limited ($K p<14.2$) ($N_{*}=960$)
- Extensions
- Multi-planet hosts $\left(N_{*}=484\right)$
- Ultra-Short Period (USP) ($P<1 \mathrm{~d}$) ($N_{*}=71$)
- Habitable Zone Planets $\left(N_{*}=127\right)$

Keck/HIRES Spectra

- $R=60,000$
- SNR = 45/pixel
- Precision Teff, logg, [Fe/H]
- Projected rotation Vsini
- Abundances [Na/H], [Li/H], ...

- Searches for faint SB2
- Absolute RVs (~100m/s)
- ... Your projects! (spectra are public)

CKS-II: Johnson, Petigura, et al. (2017)

Petigura 15 (thesis)

CKS Precision: Effective Temp.

Spectroscopic

- Teff ~ 60 K (vs ~200 K phot.)
- $\log g \sim 0.10 \mathrm{dex}$
- [Fe/H] ~ 0.04 dex
- vsini ~ 1 km/s

Derived

- $R_{\star} \sim 10 \%$ (vs $\sim 40 \%$ phot.)
- $M \star \sim 5 \%$
- ages ~ 30\%
- distances ~10\%

CKS Precision: Stellar Radii

Spectroscopic

- Teff ~ 60 K (vs ~200 K phot.)
- $\log g \sim 0.10 \mathrm{dex}$
- [Fe/H] ~ 0.04 dex
-vsini ~ 1 km/s
Derived
- $R_{\star} \sim 10 \%$ (vs $\sim 40 \%$ phot.)
$-M \star \sim 5 \%$
- ages ~ 30\%
- distances ~10\%

Gap in Planet Radif

Gap in Planet Radii

Flux Dependency

Fulton, Petigura, et al. (2017)

Flux Dependency

Figure from Lopez+16; see also Owen+13, Lopez+13, Jin+14, Chen+16

Photo-Evaporation Causes Gap

Predicted by Theory
- Owen \& Wu (2013)
- Lopez \& Fortney (2013)
- Jin et al. (2014)
- Chen \& Rogers (2016)

Explanation

- High energy XUV photons emitted during star's first 100 Myr erodes envelopes
- Most sub-Neptunes are ~3\% H/He by mass. Why?
- 3\% H/He envelopes have longest mass loss timescale
- Planets are "herded" into two typical sizes

XUV photons

$0 \% \mathrm{H} / \mathrm{He}$

$\sim 3 \mathrm{Me}_{\mathrm{e}}$ Core

Photo-Evaporation Causes Gap

Implications

- Most common core mass is ~3 ME
- Why are inner solar system planets $<1 \mathrm{ME}$?
- Large scale migration after 100 Myr is uncommon
- Planet population should change as a function of stellar mass
(different XUV output)

Planet-Metallicity Connection

Planet-Metallicity Connection

Metal-rich Stars: Diverse Planets

- Very few Hot Jupiters
-Few close-in planets (Mulders+16)
-Few planets larger than Neptune
-Possible exception: cool giants ($P>100 \mathrm{~d}$)

- More Hot Jupiters
-More close-in planets (Mulders+16)
-More warm sub-Saturns and Jovians ($P=10-100 \mathrm{~d}$)

Planet-Metallicity Correlation

$P=1-10$ days

$P=10-100$ days

The California-Kepler Survey

Homogeneous

- Keck spectra of 1305 stars hosting 2025 planet candidates

Precision

-Planet radii precise to $\sim 10 \%$
New insights

- Fulton radius gap
- Planet-metallicity connection
- Kepler compact multis
- Your projects

Data are public

- Spectra and parameters publicly available on the ExoFOP
-astro.caltech.edu/~howard/cks/

