TOWARD SOLID OBSERVATIONS OF SNOW LINE

M. Honda (Kurume University, Japan)

Collaborators:

H. Terada, T. Hattori, T. Kudo, J. Hashimoto, M. Tamura (NAOJ),

T. Nakamoto (TITech), M. Watanabe (Okayama Science Univ.),

A.K. Inoue (OsakaSangyo Univ.), et al.

Thank you for giving me this opportunity

Outline

- Snowline and planet formation
 - The theme of this symposium!
- Brief review of current snowline observations
 - Indirect / direct observations of CO snowline
 - Indirect observations of H₂O snowline
- Future prospects on direct H₂O snowline observations

Snowline: condensation/evaporation front of volatiles

- For solar nebula, R ~ 2.7AU (T~140K) suggested (Hayashi+1981,1985)
- R ~ a few AU for T Tauri stars
- R ~ 10 AU for HAeBe stars

H₂O snowline and planet formation

- major solid matter in disk
 - ice and silicate (3:1)
 - H₂O is dominant in ice
- Role of H₂O ice grains in planet formation
 - enable formation of cores of gas giants (~10M_F)
 - Dividing regions of <u>rocky terrestrial planet</u> & <u>gas giant planet regions</u>
 - First planetesimals / protoplanets formed at snow line ? (e.g. Lecar+2006)

Solar System snowline ~2.7AU (Hayashi 1981,1985)

H₂O snowline and planet formation

- major solid matter in disk
 - ice and silicate (3:1)
 - H₂O is dominant in ice
- Role of H₂O ice grains in planet formation
 - enable formation of cores of gas giants (~10M_F)
 - Dividing regions of <u>rocky terrestrial planet</u> & <u>gas giant planet regions</u>
 - First planetesimals / protoplanets formed at snow line ? (e.g. Lecar+2006)

Solar System snowline ~2.7AU (Hayashi 1981,1985)

Snowline of other molecules

- \bullet H₂O is most abundant (T_{cond} = 128-155K)
- CO and CO₂ are next abundant molecules in comets (~30% to H₂O, Mumma & Charnley 2011)
 - $T_{cond} = 60-72K (CO_2), 23-28K (CO)$
 - Snowline radius is farther than that of H₂O
 - Observtionally easier to resolve spatially

Snow line position can move

- Snowline depends on the thermal structure of the disk
- Thus depends on disk accretion rate \dot{M}
- $\dot{M} = 10^{-7} M_{\odot} yr^{-1}$ $R_{\text{snow}} = 3 \sim 4 \text{ AU}$
- As M decreases, snowline moves inward

Evolution of T Tauri-like disk $(0.5M_{\odot}, 2R_{\odot}, T_{eff} = 3000 \text{ K}, \text{ and } a=0.1\mu\text{m})$ Oka et al. 2011

Snow line position can move

- ø M vs R_{snow}
- For lower M phase (~optically thick, passive disk) R_{snow} reaches ~0.3 AU
- Within the supposed terrestrial planet forming region
- Huge water supplied to the terrestrial planets?

Evolution of T Tauri-like disk (0.5 M_{\odot} , 2 R_{\odot} , $T_{\rm eff}$ = 3000 K, and a=0.1 μ m) Oka et al. 2011

Observation of snow line position

- Many interesting theoretical studies related to snowline...
 - > need observational constraint!
- Observation of the volatile gas or dust(ice) distribution in the disk
 - Gas → radio rotational transition lines of molecules
 - Dust(ice) -> infrared solid state features
- Require <u>high-spatial resolution</u>
 - R ~ a few AU (~0.03")
 H₂O snowline
 - R~ a few tenth AU (~0.3") for CO snowline (easier)

Observation of snow line position

- Before ALMA...
 - not so much/little information available mainly due to lower spatial resolution (~1")
- After ALMA
 - Order of magnitude improvement of spatial resolution! (~0.1")
 - Higher sensitivity
- For CO snowline (~0.3"), now it's possible to spatially resolved it!
 - Indirect way using N₂H⁺
 - Direct way using ¹³C¹⁸O

ALMA resolved CO snow line (Qi et al. 2013 Science)

- TWHya face-on disk show inner hole (r~30AU) in the intensity map of N₂H⁺
- N₂H⁺ is produced under low CO gas condition
 − N₂ + H₃⁺ → N₂H⁺ + H₂
- Higher CO gas abundance stops/destroy N₂H⁺
 - CO + H₃⁺ \rightarrow HCO⁺ + H₂
 - $N_2H^+ + CO \rightarrow HCO^+ + N_2$
- N₂H⁺ shows inverse correlation with CO gas
 - Inner hole edge tracesCO snow line indirectly !!

TWHya CO snowline revisited (Zhang+2017)

- Recent ¹³C¹⁸O observations showed CO snowline radius ~20 AU for TWHya
- Usually CO line easily becomes optically thick
 - not so good surface density tracer especially for ¹²C¹⁶O
- 13C¹⁸O line is still optically thin (τ < 0.2) due to its rareness (abundance ~10⁻¹⁰)
 - Good tracer for surface density and CO snowline!

lesson learned from indirect/direct

tracer for CO snowline

- TW Hya CO snowline
 - Indirect N₂H⁺ ~30AU (Qi+2013)
 - Direct ¹³C¹⁸O ~20AU (Zhang+2017)
- Chemical modeling suggest that the relationship between N₂H⁺ and CO is more complicated (van't Hoff 2017)

- Depend also on N₂ distribution
- N₂H⁺ emission alone then merely provides and upper limit for the CO snowline locataion
- We need to be careful to use indirect tracers for observations of H₂O snowlines...

Difficulties of H₂O snowline detection

- Require much high-spatial resolution
 - R ~ a few AU (~0.03") H_2O snowline due to its relatively high T_{cond} = 128-155K (Zhang+2015)

Fast Pebble Growth @ Snow Lines?

Grain growth @ snow lines?

e.g., Zhang et al. 2015, Banzatti et al. 2015

- Snowline of various volatile account for the HL Tau multiple dust continuum rings?
 - Fast pebble growth at dark gap ?
- Sintering related ? (Okuzumi+2016)

ALMA Detection of H₂O snow line!?

Cieza+2016, Nature

- V883 Ori
 - FU Ori type-star
 - Distance: 414pc
 - Episodic outbursting object
 - luminosity of 400L_o
 - \dot{M} = 7 × 10⁻⁵ M_{\odot} per year
- ALMA Band 6 continuum
- Spectral slope α change at 0.1"(~42AU) found

ALMA Detection of H₂O snow line!?

Cieza+2016, Nature

- The temperature at the radius of spectral slope α change is T=105±11K, which agrees with H₂O condensation temperature
 - Elevated temperature due to temporal outburst
- The α radial profile is also consistent with Banzatti+2015 model which include dust drift/growth/destruction at the snowline

Remember that these are <u>indirect</u> observations...

- These studies are solely based on dust continuum observations (of unknow material)
- numerous possible other interpretations
 - Planet disk interactions (e.g. Zhu+2011)
 - Secular gravitational instability (e.g. Takahashi&Inutsuka 2014)
 - Spatial variation of the disk viscosity (e.g. Pinilla+2016)
 - ...etc, ...etc...
- Snowline is one of the possible interpretations for these observations

Yet another example of water snowline indirect, but *chemical* tracer H¹³CO⁺

- Like N₂H⁺ for CO, H¹³CO⁺ could be the (anticorrelated) chemical tracer for H₂O gas and its snowline
 - H_2O gas destroys HCO^+ $HCO^+ + H_2O \rightarrow H_3O^+ + CO$
- But still indirect chemical trace...

van't Hoff 2017

Radial abundance distribution for NGC1333 IRAS2 protostellar envelope (Kristensen+ 2012)

Toward direct observations of H₂O snowline

- At this moment, no direct solid measurements of H₂O snowline position (radius) is achieved
- - Spatially resolved optically thin H₂O gas line observations such as H₂¹8O (challenging)
 ← like ¹³C¹8O for CO (van't Hoff 2017)
 - Spectrally resolved H₂O line observations whose line shape is sensitive to the snowline position (Notsu-san's talk later)
- Further complemental method : observations of water ice distribution in the IR

InfraRed(IR) absorption features of ices/solids

- In the IR, various ice absorption feature exist
- Prominent ~3μm water ice absorption (OH vib.)
- Also observed toward edge-on protoplanetary disk

ISO spectra of massive protostar W33A

HK Tau 3μm water ice feature (Terada et al. 2007)

Ice absorption mapping to trace ice distribution

2-4µm "spectra" of face-on disk scattered light

IWA~0.7"

→ much improvement needed...

- By high-spatial resoltuion water ice absorption mapping, we can reveal the water snow line
- ◆ However, the bright stellar speckle noise hampers us to trace inner regions → improvement of inner working angle (IWA) needed as close as ~0.1"

2-4µm "spectra" of HD100546 disk scattered light

SE SW

1" 3.8µm

NE

HD100546 disk by Gemini/NICI (Honda et al. 2016)

shallow 3.1µm water ice absorption detected as close as ~40AU to the star IWA ~ 0.3"

NW

→ Still IWA improvement needed to trace surface snowline

Toward direct detection of H₂O snow line by water *ice* observations

IRCS+AO188 at Nasmyth 2-5um Half-wave plate Φ=94mm

Improvement of IWA is key to detect snowline in the infrared

→PDI (Polarimetric Differential Imaging) improves IWA

No PDI capability among 8m telescope in 3-5μm

- → We developed PDI capability of Subaru/IRCS in 2-5µm (unique among 8m-class telescope)
- Engineering/performance evaluation on-going
- Opened for public in S18A with risk-share mode
- Observation scheduled in S18A

JWST mapping of ice in the disk

- JWST will provide much higher sensitivity in λ>2μm
- Not only water ice, but also CO (4.67μm) and CO₂ ice (4.25μm) mapping possible

summary

- ALMA has started to reveal the snowline position (radius) of volatile in disks
- indirect and direct CO snowline obs.
- only indirect observations of H₂O snowline so far (be careful!)
 - <u>Direct H₂O snowline detection is next milestone!</u>
- IR observations of *ices* are also complementl to radio observations of gas
 - current telescope and JWST may contribute
- We are now moving toward more solid/reliable observations of snowlines