Search for ringed planets using the Kepler data

Masataka Aizawa (3rd-year graduate student) The University of Tokyo Theoretical Astrophysics

Collaborators: Kento Masuda, Hajime Kawahara, Yasushi Suto

10th RESCEU/Planet² Symposium (11/28-30, 2017)

Search for ringed planets using the Kepler data

Masataka Aizawa (3rd-year graduate student) The University of Tokyo Theoretical Astrophysics

Collaborators: Kento Masuda, Hajime Kawahara, Yasushi Suto

10th RESCEU/Planet² Symposium (11/28-30, 2017)

"Table of Contents"

- Introduction and previous studies
- Search around long-period planets
- Search around short-period planets
- Summary

"Rings are common in Solar System" Saturn Neptune

Jupiter

Uranus

"Exo" planetary rings would also be common!!

Possible Circumplanetary disk J1407 b (~16Myr)

Mamajek+ 2012

"PDS110" (~11Myr)

©University of Warwick

Direct Imaging of Circumplanetary Disk by ALMA

OTS 44 (~2Myr, 12 M_J)

Bayo+ 2017

Mysterious radio emissions of Proxima Centauri

4σ signal at few au

Thermal emission from planet with "large ring"?

Anglada+ 2017

Previous search for "Saturn"-like rings

HST ©NASA

 Constraint on ring size for HD 209458 (Brown+ 2001)

No signals among
21 Kepler planets
(Heising+ 2015)

Kepler ©NASA

No evidence for exo-Saturn!

TO DO

Detection of "first" Saturn-like exorings

 Derivation of frequency & size of exoplanetary ring

Every possible analysis now

Observation strategy

- Direct imaging (ALMA, Coronagraphs)
 - Low detectability of Saturn rings
 - Comparatively small sample of direct imaged planets
- Indirect method (Transit)
 - Kepler is sensitive to Saturn rings
 - Large sample of Kepler planets

Kepler planets are best targets for search

How Transiting Ringed Planets look like?

Longer transit duration & larger depth

Residual obtained from ringless fitting
 We will seek for such tiny signatures

"Table of Contents"

- Introduction and previous studies
- Search around long-period planets
- Search around short-period planets
- Summary

"Search around long-period planets"

- Saturnian rings are composed of ice
- Rings are stable around cold (long-period) planets
 Let's search for rings around cold planets!!

Aizawa, Uehara, Masuda, Kawahara & Suto AJ, 153 (2017) 193 (23pp)

Targets: Long-period planets

- 89 long-period transiting planets chosen from
 KOIs (T<200K)
 - Few transits systems (Wang+ 2015, Uehara+ 2016)
- LC data (29.4 mins)
- Small number of transits (long period and cold)

Fitting w/ ringless model and visual inspection

Example (1)

Example (2)

Two possible solutions for ring models
Stellar model and current data -> dwarf star

"Another possibility: Transiting binary planet"

Transiting binary planet also explains data

"Third Possibility: Circumstellar disk"Host star can be giantNeed for stellar spectrum

"Table of Contents"

- Introduction and previous studies
- Search around long-period planets
- Search around short-period planets
- Summary

"Search around short-period planets"

- High S/N & reproducibility (multiple transits)
- SC data (1min)

•168 targets with MES>100 (1σ for Saturn)

"Method: Search for signatures & constrains"

Search for ring signatures

- Compare models w/ and w/o rings
- Consider full parameter space

Upper limits on ring size

Tidally aligned disk (Brown+2001)

"False positive: Disintegrating planet"

Dust tails are origins (Rappaport+ 2012)

Quasi-periodic signals throughout light curves

"33 planets w/ 2σ signals out of 168 planets"

But, other phenomena mimic ring-like signals

- Gravity darkening (e.g. Masuda 2015)
- Spot Crossing (e.g. Rabus+ 2009)
- Evaporating planets (e.g. Rappaport+ 2012)
- Stellar activities
- 2σ> but very marginal signals

No evident signatures among Kepler SC data

"Upper limits on ring size"

 Assuming rings to be tidally aligned with orbital axes (Brown+ 2001)

 24 systems exlude rings larger than 2R_p

• First sample of ring size

Summary & Future prospects

- Only KIC 10403228 is possible (though dubious) candidate
- There are no evident signals of rings in the Kepler short-cadence data
- First statistical samples of ring size
- Long-span data are needed to find Saturn-like rings

