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Perturbative anomalous growth of light s
alar�elds in the de Sitter spa
e-timeBa
kground - �xed - de Sitter or, more interestingly, quasi-deSitter spa
e-time (slow roll in
ation).O

urs for 0 � m2 � H2 where H � _aa ; a(t) is a FRW s
alefa
tor. The simplest and textbook example:m = 0; H = H0 = 
onst for t � t0 and the initial quantumstate of the s
alar �eld at t = t0 is the adiabati
 va
uum formodes with k=a(t0)� H0 and some infrared �nite stateotherwise: < �2 >= H20N4�2 + 
onstHere N = ln aa(t0) � 1 is the number of e-folds from thebeginning of in
ation and the 
onstant depends on the initialquantum state (Linde, 1982; Starobinsky, 1982; Vilenkin andFord, 1982).Straightforward generalization to the slow-roll 
ase j _H j � H2.



For 0 < m2 � H2, the Bun
h-Davies equilibrium value< �2 >= 3H408�m2 � H20is rea
hed after a large number of e-folds N � H20m2 . In theslow-roll 
ase with _H 6= 0, the "instantaneous" value withH(t) instead of H0 is generi
ally never rea
hed at all!Purely infrared e�e
t - 
reation of real �eld 
u
tuations;renormalization is not important and does not a�e
t it.For the de Sitter in
ation (gravitons only) (AS, 1979):Pg(k) = 16GH20� ; < hikhik >= 16GH20N� :The assumption of small perturbations breaks down forN & 1=GH20 . Still ongoing dis
ussion on the �nal out
ome ofthis e�e
t. My opinion - no s
reening of the ba
kground
osmologi
al 
onstant, instead - sto
hasti
 drift through anin�nite number of lo
ally de Sitter, but globally non-equivalentva
ua. A �nite and small shift in H0 : ÆH0 � GH30 .



Reason: the de Sitter spa
e-time is not the generi
 late-timeasymptote of 
lassi
al solutions of GR with a 
osmologi
al
onstant � both without and with hydrodynami
 matter. Thegeneri
 late-time (expanding) asymptote is (Starobinsky,1983): ds2 = dt2 � 
ikdx idxk
ik = e2H0taik + bik + e�H0t
ik + :::where H20 = �=3 and the matri
es aik ; bik ; 
ik are fun
tions ofspatial 
oordinates. aik 
ontains two independent physi
alfun
tions (after 3 spatial rotations and 1 shift in time +spatial dilatation) and 
an be made unimodular, in parti
ular.



An always larger e�e
t - due to s
alar (adiabati
) 
u
tuationsof an in
aton degree of freedom (Mukhanov and Chibisov,1981; Hawking, 1982; Starobinsky, 1982; Guth and Pi, 1982):P�(k) = GH4k�j _H jkwhere the index k means that the quantity is taken at themoment t = tk of the Hubble radius 
rossing during in
ationfor ea
h spatial Fourier mode k = a(tk)H(tk).The 
onsisten
y relation for in
aton-driven in
ationr � PgP� = 16j _Hk jH2k = 8jng j < 0:17(the last inequality - from the most re
ent observations).For suÆ
iently large Nf = ln �afa �, inhomogeneous 
u
tuationsbe
ome larger than 1. Loop 
orre
tions proportional to higherpowers of h may be
ome important in this regime only.



Beyond small perturbations during slow-rollin
ationLo
ally { around our world-line { slow-roll in
ation has boththe beginning and the end.Globally it has no beginning and no end in the most ofinteresting 
ases { in the sense that pat
hes of anapproximately de Sitter spa
e-time (not ne
essarily expandingonly) always exist somewhere in spa
e and time (but outsideour past and future light 
ones) - "eternal in
ation".Taking ba
krea
tion into a

ount =) quantum ba
kground.



Sto
hasti
 approa
h to in
ation ("sto
hasti
 in
ation"):R̂�� � 12Æ��R̂ = 8�GT̂ �� (ĝ��)- not as a fun
tion of < ĝ�� > !Leads to QFT in a sto
hasti
 ba
kground.Sto
hasti
 in
ation:1) 
an deal with an arbitrary large (though suÆ
ientlysmooth) global inhomogeneity;2) takes ba
krea
tion of 
reated 
u
tuations into a

ount;3) goes beyond any �nite order of loop 
orre
tions.Fully developed in Starobinsky (1984,1986) though the �rstsimpli�ed appli
ation (but beyond the one-loop approximation)was already in Starobinsky (1982).



Langevin equation for the large-s
ale �eldThe �rst main idea: splitting of the in
aton �eld � into alarge-s
ale and a small-s
ale parts with respe
t to H. Moreexa
tly, the border is assumed to lie at k = �aH withexp��H2j _Hj�� �� 1.The se
ond main idea: a non-
ommutative part of thelarge-s
ale �eld is very small (it is 
omposed from de
ayingmodes), so we may negle
t it. Then the remaining part isequivalent (not equal!) to a sto
hasti
 
-number (
lassi
al)�eld with some distribution fun
tion.d�d� (n) = � 13Hn+1 dVd� + f ;< f (� (n)1 ) f (� (n)2 ) >= H3�n4�2 Æ(� (n)1 � � (n)2 ) :The time-like variables � (n) = R Hn(t; r) dt, whereH2 = 8�GV (�)=3.



This is not a time reparametrization t ! f (t) in GR. Di�erent� (n) des
ribe di�erent sto
hasti
 pro
esses and even havedi�erent dimensionality. Di�erent "
lo
ks" are needed tomeasure them:1) n = 0: phase of a wave fun
tion of a massive parti
le(m� H);2) n = 1: s
alar metri
 perturbations (ÆN formalism);3) n = 3: dispersion of a light s
alar �eld generated duringin
ation < �2 >= 14�2 < Z H3 dt >= < � (3) >4�2 :See F. Finelli et al., Phys. Rev. D 79, 044007 (2009) formore details.



f des
ribes the 
ow of small-s
ale linear �eld modes throughthe border k = �aH to the large-s
ale region in the 
ourse ofthe universe expansion. In the leading approximation, it is
onstru
ted from solutions of the massless s
alar �eld equationin the de Sitter spa
e-time with the adiabati
 va
uum initial
ondition for a given spatial Fourier mode:�k = H0 (2k)�1=2�� � ik� e�ik� ; � = �(a(t)H0)�1f (t; r) = �aH20(2�)3=2 Z d3k Æ(k��aH0) (�i)H0p2k3=2 hake�ikr � ayke ikriThough formally an operator, f (t; r) is equivalent to a
lassi
al Gaussian white noise.Appli
ability 
onditions { the standard slow-roll ones:V 02 � 48�GV 2; jV "j � 8�GV =3



Einstein-Smoluhovsky (Fokker-Plan
k) equation���� = ��� � V 03Hn+1 �� + 18�2 �2��2 �H3�n�� :Probability 
onservation: R � d� = 1.RemarksI More generally, the last term 
an be written the form18�2 ��� �H(3�n)� ��� �H(3�n)(1��)���with 0 � � � 1.� = 0 { Ito 
al
ulus.� = 1=2 { Stratonovi
h 
al
ulus.However, keeping terms expli
itly depending on � ex
eedsthe a

ura
y of the sto
hasti
 approa
h. Thus, � mayput 0.



I All results are independent of the form of a 
uto� in themomentum spa
e as far as it o

urs for k � aH (�� 1).I Ba
krea
tion is taken into a

ount: ÆT �� = (V �V
las) Æ��.I No ne
essity in any infrared 
uto�. Problems with the so
alled "volume weighting" arise be
ause quantities likea3� are 
onsidered whi
h are not normalizable, thus, theymay not be 
onsidered as probabilities of anything fromthe mathemati
al point of view ("unitarity breaking").Their physi
al justi�
ation is also 
awed sin
e it based onthe wrong assumption that all Hubble physi
al volumes("observers") emerging from expansion of a previousin
ationary pat
h are 
lones of ea
h other while it is notso.



I Another possible sour
e of apparent infrared divergen
es:use of "gauge invariant" (with respe
t to a ba
kgroundspa
e-time metri
) variables like �(r; t) whi
h are notgenerally 
ovariant with respe
t to the full metri
 and,therefore, not dire
tly observable. In 
ontrast, quantitieslike �(r; t)� �(0; t0) are generally 
ovariant andobservable though non-lo
al.I The a

ura
y of the sto
hasti
 approa
h is not suÆ
ientfor 
al
ulating quantities � H2 in < �2 > and � H4 inEMT average values be
ause of the omission of a
ontribution from the small-s
ale part (in
luding the
onformal anomaly). However, all larger quantities (ifexist) 
an be 
al
ulated quantitatively 
orre
tly. Also, thesmall-s
ale part is mainly the one-loop 
orre
tion from amassless minimally 
oupled s
alar �eld, so it 
an beadded.



Transition to predi
tions for the post-in
ationaryevolutionFrom �(�; �) during in
ation to the distribution w(�) over thetotal lo
al duration of in
ation:w(�) = lim�!�end j = lim�!�end jV 0j3Hn+1 �(�; �) :For the gra
eful exit to a post-in
ationary epo
h, thesto
hasti
 for
e should be mu
h less than the 
lassi
al oneduring last e-folds of in
ation.The same way to obtain the joint distribution w(0; �1; jrj; �2)from the 2-point joint probability distribution�(�1; 0; �1;�2; jrj; �2) during in
ation.



From ÆN- to N-formalism
Let n = 1. Whends2 = dt2 � a2(t)e2�(r)dr2 + small termsafter in
ation and 
omplete thermalization where�(r) = N(r) � � (1)(r) :



Probabilities to go to di�erent va
ua after in
ationLet in
ation may end in two va
ua: � = �1 and � = �2 withV (�1) = V (�2) = 0 (to 
onsider a larger number ofpost-in
ationary va
ua, � should have more thanone-dimensional internal spa
e).
φ1 φ2φ3 φ4 φ

V



Boundary 
onditions at the end of in
ation:�(�1; �) = �(�2; �) = 0.Method of 
al
ulation (Starobinsky (1984,1986)): 
onsider thequantities Qm(�) = Z 10 �m�(�; �) d�where � = 0 
orresponds to the lo
al beginning of in
ation.Qm(�1) = Qm(�2) = 0.By integrating the Fokker-Plan
k equation over � , we get form = 0:



Q0(�) = 8�2H3�n exp� �GH2(�)� Z ��1 d exp�� �GH2( )���C0 � Z  �1 �0( 1) d 1� ;C0 = R �2�1 d� exp�� �GH2(�)� R ��1 �0( ) d R �2�1 d� exp�� �GH2(�)� :P1 = C0 { the absolute probability to go to the va
uum� = �1;P2 = 1� C0 { the absolute probability to go to the va
uum� = �2.No n dependen
e in C !



Lo
al duration of in
ationQ1(�) = 8�2H3�n exp� �GH2(�)� Z ��1 d exp�� �GH2( )���C1 � Z  �1 Q0( 1) d 1� ;C1 = R �2�1 d� exp�� �GH2(�)� R ��1 Q0( ) d R �2�1 d� exp�� �GH2(�)� :< �1 >= C1C0 ; < �2 >= ~C11� C0 ;< � >tot= C0 < �1 > +(1� C0) < �2 >= Z �2�1 Q0(�) d� :~C1 is C1 with �1 and �2 inter
hanged.



Some thoughts on the 
hoi
e of an initial 
onditionI Stati
 solutions { not normalizable in the in
ationary (i.e.unstable) 
ase.I �0(�) = Æ(�� �0) { why?I "Eternal in
ation as an initial 
ondition": �0(�) / �E1(�){ the wave fun
tion of the lowest energy level of theS
hrodinger equation arising through the separation ofvariables in the Fokker-Plan
k equation (E0 = 0 due tohidden supersymmetry of the former).1) Not possible in the 
ontinuum spe
trum 
ase.2) In the dis
rete spe
trum 
ase, generi
ally E2 � E1 � E1{ not enough time for relaxation.As a whole, "eternal" in
ation seems not be eternalenough to �x the initial 
ondition uniquely.



However, if in
ation had o

urred at all, the dependen
e ofpredi
tions on �0(�) is 
omparatively weak: for almost all�0(�) ex
ept from the HH-like one �0(�) / exp� �GH2(�)�, themain 
ontribution 
omes from the highest maximum of V (�)without any ne
essity of a "tunneling" initial 
ondition.On the other hand, if �0(�) / exp� �GH2(�)�, there ispra
ti
ally no in
ation at all, and �nal probabilities P1 and P2are equal to the initial ones.



Correlations and joint PDFFollowing A.A. Starobinsky and J. Yokoyama, Phys. Rev. D50, 6357 (1994).In the leading approximations, all Green fun
tions and jointn-point probability distributions of the in
aton �eld 
an beexpressed through solutions of the same Fokker-Plan
kequation with di�erent initial 
onditions only. In parti
ular, inthe 
ase H � H0 during in
ation (for simpli
ity only), thegeneral two-point PDF for 4D-points lying outside ea
h otherfuture light 
ones in the sto
hasti
 approa
h is:�2[�1(r1; t1); �2(r2; t2)℄ =Z �[�1(r1; t1)j�r(r1; tr)℄�[�2(r2; t2)j�r(r2; tr)℄�1(�r ; tr ) d�r



where tr is the time in the past when both 
orresponding3D-points were inside one Hubble volume and�[�1(r; t1)j�2(r; t2)℄ satis�es the Fokker-Plan
k equation withrespe
t to both its time and �eld variables with the initial
ondition �[�1(r; t1)j�2(r; t1)℄ = Æ(�1 � �2)Through the N-formalism - joint probability distributions of aspa
e-time metri
 after in
ation.Otherwise, if the 4D-points are inside the future light 
one ofone of them, the spatial points r1 and r2 are inside oneelementary averaging volume, so they 
oin
ide in terms of thesto
hasti
 approa
h. Then, for t1 < t2,�2[�1(r; t1); �2(r; t2)℄ = �[�2(r; t2)j�1(r; t1)℄�1(�1; t1))



Con
lusionsI During slow-roll in
ation, ba
krea
tion of 
reated in
aton
u
tuations has to be taken into a

ount for suÆ
ientlylong in
ation and leads to QFT in a sto
hasti
ba
kground.I No problems of prin
iple in predi
ting all joint probabilitydistributions for light s
alar �elds, in
luding the in
atonitself, during and after in
ation (N-formalism) in theoriginal (probability 
onserving) sto
hasti
 approa
h, on
ean initial 
ondition �0(�) is given. No ne
essity to refer toother universes outside our light 
one.I New "
lo
ks" apart from metri
 perturbations areprobably needed to measure large infrared e�e
ts like thetotal lo
al duration of an in
ationary stage in ourUniverse.



I No satisfa
tory prin
iple to �x �0(�) uniquely.I Some dependen
e on �0(�) remains in �nal answers, so apossibility to get some knowledge on it from observationaldata does not seem hopeless. However, if in
ation hado

urred at all, the dependen
e of predi
tions on �0(�) isweak and mainly produ
ed by the region around thehighest maximum of V (�). For this, no spe
i�
"tunneling" initial 
ondition is needed.Congratulations and best wishes to Kodama-san,Sasaki-san and Futamase-san on
e more!
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