

Roman Konoplya, JGRG 22(2012)111602

JGRG JGRG JGR

"Stability of black holes: summary of some results for the past 10

years"

RESCEU SYMPOSIUM ON

GENERAL RELATIVITY AND GRAVITATION

JGRG 22

November 12-16 2012

Koshiba Hall, The University of Tokyo, Hongo, Tokyo, Japan

Black holes' stability: A review

R. A. Konoplya

DAMTP, University of Cambridge, UK

Tokyo, Nov. 11 - Nov. 16, 2012 the 60th birthday of T. Futamase, H. Kodama, M. Sasaki

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Recent reviews on stability of BHs:

in D > 4 A. Ishibashi, H. Kodama, Prog. Theor. Phys. Suppl. 189 (2011) 165-209 $D \ge 4$ R. A. Konoplya, A. Zhidenko, Rev. Mod. Phys. 83 (2011) 793-836

Introduction

Recent reviews on stability of BHs:

in D > 4 A. Ishibashi, H. Kodama, Prog. Theor. Phys. Suppl. 189 (2011) 165-209 $D \ge 4$ R. A. Konoplya, A. Zhidenko, Rev. Mod. Phys. 83 (2011) 793-836

Introduction

Criteria of stability: analytical vs numerical

Recent reviews on stability of BHs:

in D > 4 A. Ishibashi, H. Kodama, Prog. Theor. Phys. Suppl. 189 (2011) 165-209 $D \ge 4$ R. A. Konoplya, A. Zhidenko, Rev. Mod. Phys. 83 (2011) 793-836

Introduction

Criteria of stability: analytical vs numerical

(In)stability of 3+1 dimensional BHs

Recent reviews on stability of BHs:

in D > 4 A. Ishibashi, H. Kodama, Prog. Theor. Phys. Suppl. 189 (2011) 165-209 $D \ge 4$ R. A. Konoplya, A. Zhidenko, Rev. Mod. Phys. 83 (2011) 793-836

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Introduction

Criteria of stability: analytical vs numerical

(In)stability of 3+1 dimensional BHs

Instability of D > 4 BHs: Gregory-Laflamme instability and not only

Recent reviews on stability of BHs: in D > 4 A. Ishibashi, H. Kodama, Prog. Theor. Phys. Suppl. 189 (2011) 165-209 $D \ge 4$ R. A. Konoplya, A. Zhidenko, Rev. Mod. Phys. 83 (2011) 793-836

Introduction

Criteria of stability: analytical vs numerical

(In)stability of 3+1 dimensional BHs

Instability of D > 4 BHs: Gregory-Laflamme instability and not only

Potential turbulent instabilities

Recent reviews on stability of BHs: in D > 4 A. Ishibashi, H. Kodama, Prog. Theor. Phys. Suppl. 189 (2011) 165-209 $D \ge 4$ R. A. Konoplya, A. Zhidenko, Rev. Mod. Phys. 83 (2011) 793-836

Introduction

Criteria of stability: analytical vs numerical

(In)stability of 3+1 dimensional BHs

Instability of D > 4 BHs: Gregory-Laflamme instability and not only

Potential turbulent instabilities

Conclusions

We shall discuss mainly (but not only) linear dynamical (in)stabilities

Two main motivations to study gravitational stability of black holes:

Two main motivations to study gravitational stability of black holes:

• Criterium of existence (in D = 4 for alternative theories of gravity and in D > 4 owing to absence of uniqueness)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Two main motivations to study gravitational stability of black holes:

• Criterium of existence (in D = 4 for alternative theories of gravity and in D > 4 owing to absence of uniqueness)

• gauge-gravity duality (instability corresponds to the phase transition in the dual theory)

Two main motivations to study gravitational stability of black holes:

• Criterium of existence (in D = 4 for alternative theories of gravity and in D > 4 owing to absence of uniqueness)

• gauge-gravity duality (instability corresponds to the phase transition in the dual theory)

• scenarios with extra dimensions (though experimental data on LHC gives no optimism: no large total transverse energy so far at 8 TEV: CMS collaboration claims that semiclassical BHs with mass below 6.1 TeV are excluded)

• Step 1: Perturbations can be written in the linear approximation in the form

$$g_{\mu\nu} = g^0_{\mu\nu} + \delta g_{\mu\nu}, \qquad (1)$$

$$\delta R_{\mu\nu} = \kappa \, \delta \left(T_{\mu\nu} - \frac{1}{D-2} T g_{\mu\nu} \right) + \frac{2\Lambda}{D-2} \delta g_{\mu\nu}. \tag{2}$$

Linear approximation means that in Eq. (2) the terms of order $\sim \delta g^2_{\mu\nu}$ and higher are neglected. The unperturbed space-time given by the metric $g^0_{\mu\nu}$ is called the background.

• Step 1: Perturbations can be written in the linear approximation in the form

$$g_{\mu\nu} = g^0_{\mu\nu} + \delta g_{\mu\nu}, \qquad (1)$$

$$\delta R_{\mu\nu} = \kappa \, \delta \left(T_{\mu\nu} - \frac{1}{D-2} T g_{\mu\nu} \right) + \frac{2\Lambda}{D-2} \delta g_{\mu\nu}. \tag{2}$$

Linear approximation means that in Eq. (2) the terms of order $\sim \delta g^2_{\mu\nu}$ and higher are neglected. The unperturbed space-time given by the metric $g^0_{\mu\nu}$ is called the background.

• Step 2: decomposition of the perturbed space-time into scalar, vector and tensor parts

• Step 1: Perturbations can be written in the linear approximation in the form

$$g_{\mu\nu} = g^0_{\mu\nu} + \delta g_{\mu\nu}, \qquad (1)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

$$\delta R_{\mu\nu} = \kappa \, \delta \left(T_{\mu\nu} - \frac{1}{D-2} T g_{\mu\nu} \right) + \frac{2\Lambda}{D-2} \delta g_{\mu\nu}. \tag{2}$$

Linear approximation means that in Eq. (2) the terms of order $\sim \delta g^2_{\mu\nu}$ and higher are neglected. The unperturbed space-time given by the metric $g^0_{\mu\nu}$ is called the background.

• Step 2: decomposition of the perturbed space-time into scalar, vector and tensor parts

• Step 3: using the gauge invariant formalism (or fixing the gauge)

• Step 1: Perturbations can be written in the linear approximation in the form

$$g_{\mu\nu} = g^0_{\mu\nu} + \delta g_{\mu\nu}, \qquad (1)$$

$$\delta R_{\mu\nu} = \kappa \, \delta \left(T_{\mu\nu} - \frac{1}{D-2} T g_{\mu\nu} \right) + \frac{2\Lambda}{D-2} \delta g_{\mu\nu}. \tag{2}$$

Linear approximation means that in Eq. (2) the terms of order $\sim \delta g^2_{\mu\nu}$ and higher are neglected. The unperturbed space-time given by the metric $g^0_{\mu\nu}$ is called the background.

• Step 2: decomposition of the perturbed space-time into scalar, vector and tensor parts

• Step 3: using the gauge invariant formalism (or fixing the gauge)

• Step 4: Reducing the perturbation equations (after separation of angular variables) to a second order partial differential equation, termed *master wave equation*. For example, for static and some stationary BHs the master wave equation has the form:

$$-\frac{d^2R}{dr_*^2} + V(r,\omega)R = \omega^2 R,$$
(3)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• If the effective potential V_{eff} in the wave equation (3) is positive definite, the differential operator

$$A = -\frac{\partial^2}{\partial r_*^2} + V_{eff} \tag{4}$$

is a positive self-adjoint operator in the Hilbert space of square integrable functions $L^2(r_*, dr_*)$. Then, there are no negative (growing) mode solutions that are normalizable, i. e., for a well-behaved initial data (smooth data of compact support), all solutions are bounded all of the time.

• If the effective potential V_{eff} in the wave equation (3) is positive definite, the differential operator

$$A = -\frac{\partial^2}{\partial r_*^2} + V_{eff} \tag{4}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

is a positive self-adjoint operator in the Hilbert space of square integrable functions $L^2(r_*, dr_*)$. Then, there are no negative (growing) mode solutions that are normalizable, i. e., for a well-behaved initial data (smooth data of compact support), all solutions are bounded all of the time.

• Yet, in majority of cases A is not positive (negativeness of the effective potential in some regions, dependence of the potential on the complex frequencies ω)

• If the effective potential V_{eff} in the wave equation (3) is positive definite, the differential operator

$$A = -\frac{\partial^2}{\partial r_*^2} + V_{eff} \tag{4}$$

is a positive self-adjoint operator in the Hilbert space of square integrable functions $L^2(r_*, dr_*)$. Then, there are no negative (growing) mode solutions that are normalizable, i. e., for a well-behaved initial data (smooth data of compact support), all solutions are bounded all of the time.

• Yet, in majority of cases A is not positive (negativeness of the effective potential in some regions, dependence of the potential on the complex frequencies ω)

• Sometimes the situation can be remedied by the so-called S-deformation of the wave equation to the one with positive definite effective potential, in such a way that the lower bound of the energy spectrum does not change.

• If the effective potential V_{eff} in the wave equation (3) is positive definite, the differential operator

$$A = -\frac{\partial^2}{\partial r_*^2} + V_{eff} \tag{4}$$

is a positive self-adjoint operator in the Hilbert space of square integrable functions $L^2(r_*, dr_*)$. Then, there are no negative (growing) mode solutions that are normalizable, i. e., for a well-behaved initial data (smooth data of compact support), all solutions are bounded all of the time.

• Yet, in majority of cases A is not positive (negativeness of the effective potential in some regions, dependence of the potential on the complex frequencies ω)

• Sometimes the situation can be remedied by the so-called S-deformation of the wave equation to the one with positive definite effective potential, in such a way that the lower bound of the energy spectrum does not change.

• Usually, it is difficult to find an ansatz for the S-deformation, so that numerical treatment of the wave equation is necessary.

(ロト (個) (目) (日) (日) (の)

• Quasinormal modes are eigenvalues of the master wave equation with appropriate boundary conditions: purely ingoing waves at the horizon and purely outgoing waves at infinity or de Sitter horizon. For AdS BHs boundary condition at infinity is dictated by AdS/CFT and is usually the Dirichlet one $\Psi = 0$, where Ψ is some gauge inv. combination.

• Quasinormal modes are eigenvalues of the master wave equation with appropriate boundary conditions: purely ingoing waves at the horizon and purely outgoing waves at infinity or de Sitter horizon. For AdS BHs boundary condition at infinity is dictated by AdS/CFT and is usually the Dirichlet one $\Psi = 0$, where Ψ is some gauge inv. combination.

• Quasinormal modes normally have real and imaginary parts $\omega_{\ell,m,\ldots} = Re\omega + iIm\omega$ and depend on a number of quantum numbers such as multipole number ℓ , azimuthal number *m*, overtone numbers *n*. That is, there are infinite countable number of quasinormal modes. Potential difficulties: instability usually occurs at lower multipoles ℓ , but also may happen at high ℓ (Gauss-Bonnet BH), an effective potential may have very cumbersome form, the imaginary part of the unstable mode may be very small,

• Quasinormal modes are eigenvalues of the master wave equation with appropriate boundary conditions: purely ingoing waves at the horizon and purely outgoing waves at infinity or de Sitter horizon. For AdS BHs boundary condition at infinity is dictated by AdS/CFT and is usually the Dirichlet one $\Psi = 0$, where Ψ is some gauge inv. combination.

• Quasinormal modes normally have real and imaginary parts $\omega_{\ell,m,\ldots} = Re\omega + iIm\omega$ and depend on a number of quantum numbers such as multipole number ℓ , azimuthal number *m*, overtone numbers *n*. That is, there are infinite countable number of quasinormal modes. Potential difficulties: instability usually occurs at lower multipoles ℓ , but also may happen at high ℓ (Gauss-Bonnet BH), an effective potential may have very cumbersome form, the imaginary part of the unstable mode may be very small,

• How to show that all of the QNMs are damped?

• Quasinormal modes are eigenvalues of the master wave equation with appropriate boundary conditions: purely ingoing waves at the horizon and purely outgoing waves at infinity or de Sitter horizon. For AdS BHs boundary condition at infinity is dictated by AdS/CFT and is usually the Dirichlet one $\Psi = 0$, where Ψ is some gauge inv. combination.

• Quasinormal modes normally have real and imaginary parts $\omega_{\ell,m,\ldots} = Re\omega + iIm\omega$ and depend on a number of quantum numbers such as multipole number ℓ , azimuthal number *m*, overtone numbers *n*. That is, there are infinite countable number of quasinormal modes. Potential difficulties: instability usually occurs at lower multipoles ℓ , but also may happen at high ℓ (Gauss-Bonnet BH), an effective potential may have very cumbersome form, the imaginary part of the unstable mode may be very small,

• How to show that all of the QNMs are damped?

• Ideally, either: to achieve an asymptotic regime in all numbers ℓ , m, etc... and parameters in the *frequency domain* or to perform *time-domain* integration until asymptotic tails. Better - both.

Black hole solution (parameters)	Publication
Schwarzschild (M)	Regge, Wheeler 1957
Reissner-Nordström (<i>M</i> , <i>Q</i>)	Moncrief; Alekseev 1974
exactly extreme Reissner-Nordström (M, Q)	Aretakis 2011
Schwarzschild-dS (M, $\Lambda > 0$)	Mellor, Moss 1989
Schwarzschild-AdS (M, $\Lambda < 0$)	Cardoso, Lemos 2001
Reissner-Nordström-dS (Μ, Q, Λ)	Mellor 1989
Kerr (M, J)	Press 1973; Teukolsky 1974
exactly extreme Kerr (M, J)	Aretakis 2011; Lucietti, Reall, 2012
Kerr-dS (M, J, $\Lambda > 0$)	Suzuki 1999
Kerr-AdS (M, J, $\Lambda < 0$)	Giammatteo 2005
Kerr-Newmann (M, J, Q)	?
Kerr-Newman-A(dS) (Μ, J, Q, Λ)	?
Dilaton (M, Q, ϕ)	Holzhey 1991; Ferrari, 2000
Dilaton-axion (M, Q, J, ϕ , ψ)	?
Dilaton-GB (M, ϕ)	Torii 1998, Pani 2009
Born-Infeld (M, Q)	axial only, Fernando 2004
Black universes (M, ϕ)	Bronnikov, Konoplya, Zhidenko 2012
BHs in the Chern-Simons theory (M, β)	Cardoso 2010

• Non extreme four dimensional BHs are usually stable under linear gravitational perturbations, except black universes with the minimal area function and rotating asymptotically AdS BHs (superradiant modes).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• Non extreme four dimensional BHs are usually stable under linear gravitational perturbations, except black universes with the minimal area function and rotating asymptotically AdS BHs (superradiant modes).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• Extreme Kerr and Reissner-Nordstrom BHs space-times are unstable.

• Non extreme four dimensional BHs are usually stable under linear gravitational perturbations, except black universes with the minimal area function and rotating asymptotically AdS BHs (superradiant modes).

- Extreme Kerr and Reissner-Nordstrom BHs space-times are unstable.
- \bullet Wormholes and black holes supported by exotic matter, such as phantom fields, are usually unstable.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● ● ●

• Non extreme four dimensional BHs are usually stable under linear gravitational perturbations, except black universes with the minimal area function and rotating asymptotically AdS BHs (superradiant modes).

- Extreme Kerr and Reissner-Nordstrom BHs space-times are unstable.
- Wormholes and black holes supported by exotic matter, such as phantom fields, are usually unstable.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

...and from
 1993 Gregory and Laflamme (black branes)
 2003 Ishibashi and Kodama (black holes)

a higher dimensional story starts...

Three types of instability:

• **Gregory-Laflamme instability**. It occurs for black strings at long wavelengthes in the extra dimension *z* and is connected with inapplicability of the Birkhoff theorem. Gregory and Laflamme 1993. Gubser and Mitra instability (2001) for large highly charged RNdS BHs in N = 8 supergravity is of this kind. Development of black string instability beyond linear order - nonuniform string - thermodynamic arguments and numerical computations by Choptuik and others, 2000th

Three types of instability:

• **Gregory-Laflamme instability**. It occurs for black strings at long wavelengthes in the extra dimension *z* and is connected with inapplicability of the Birkhoff theorem. Gregory and Laflamme 1993. Gubser and Mitra instability (2001) for large highly charged RNdS BHs in N = 8 supergravity is of this kind. Development of black string instability beyond linear order - nonuniform string - thermodynamic arguments and numerical computations by Choptuik and others, 2000th

• Superradiant instability of asymptotically AdS rotating BHs. If

$$\frac{m\Omega}{\omega} > 1, \tag{5}$$

the reflected wave has larger amplitude than the incident one, a superradiance. This effect was predicted by Zeldovich and proved for Kerr BHs by A. Starobinsky in 1974. Super-radiance is connected with extraction of rotational energy of a black hole and occurs at positive ("co-rotating"with a black hole) m. Super-radiance + Dirichlet boundary conditions far from black hole = instability. Therefore, rotating AdS black holes are unstable in the superradiant regime.

Three types of instability:

• **Gregory-Laflamme instability**. It occurs for black strings at long wavelengthes in the extra dimension *z* and is connected with inapplicability of the Birkhoff theorem. Gregory and Laflamme 1993. Gubser and Mitra instability (2001) for large highly charged RNdS BHs in N = 8 supergravity is of this kind. Development of black string instability beyond linear order - nonuniform string - thermodynamic arguments and numerical computations by Choptuik and others, 2000th

• Superradiant instability of asymptotically AdS rotating BHs. If

$$\frac{m\Omega}{\omega} > 1, \tag{5}$$

the reflected wave has larger amplitude than the incident one, a superradiance. This effect was predicted by Zeldovich and proved for Kerr BHs by A. Starobinsky in 1974. Super-radiance is connected with extraction of rotational energy of a black hole and occurs at positive ("co-rotating"with a black hole) m. Super-radiance + Dirichlet boundary conditions far from black hole = instability. Therefore, rotating AdS black holes are unstable in the superradiant regime.

• "Non-Gregory-Laflamme"instability. The "other"type of instability which is not connected with the inapplicability of the Birkhoff theorem or superradiance. It happens, for instance, for asymptotically de Sitter highly charged black holes in D > 6 space-times.

Instability of RNAdS BHs in supergravity and RNdS instability in EM theory

PMC.: Left: Gubser-Mitra instability of R-N-AdS in N = 8 supergravity; Right: R-N-dS instability, Konoplya, Zhidenko PRL, 2009. The parametric region of instability in the right upper corner of the square in the $\rho - q$ "coordinates" for D = 7(top, black), D = 8 (blue), D = 9 (green), D = 10 (red), D = 11 (bottom, magenta). The units $r_+ = 1$ are used; $\rho = r_+/r_c = 1/r_c < 1$, r_c is the cosmological horizon. The charge can be normalized by its extremal quantity $q = Q/Q_{ext} < 1$.

Superradiant instability

Puc.: The stable region in the parameter plane for the simply rotating higher-dimensional asymptotically AdS black hole. Kodama, Konoplya, Zhidenko 2009. The instability has the tiny growth rate which, apparently, will be suppressed by the intensive Hawking evaporation.

(In)stability of higher-dimensional black holes

Black hole solution (parameters)	Publication
Schwarzschild (M)	Stable for all D Kodama, Ishibashi 2003
non extreme R-N (M, Q)	Stable for $D = 5, 6,, 11$ K.Z. 2009
Schwarzschild-dS (M, Λ), (M, $\Lambda > 0$)	Stable for $D = 5, 6,, 11$ K.Z. 2007
Schwarzschild-AdS (M, Λ) (M, $\Lambda < 0$)	Stable in EM theory for $D = 5, 6, \ldots, 11$ K.Z. 2008
R-N -dS (M, Λ) (M, Q, $\Lambda > 0$)	Unstable for $D = 7, 8,, 11$ K.Z. 2009
R-N -AdS in E-M (M, Λ) (M, Q, $\Lambda < 0$)	stable in E-M K.Z. 2008
R-N -AdS in supergravity (M, Λ) (M, Q, $\Lambda < 0$)	unstable Gubser, Mitra 2000
Gauss-Bonnet (M, α)	Unstable for large α , Dotti 2006
Lovelock (M, α , β ,)	Unstable for large $lpha$, Soda, Takahashi
Myers-Perry and its generalizations (M, J)	? Only particular types of perturbations
Dilaton (M, Q, ϕ)	?
Dilaton-axion (M, Q, J, ϕ , ψ)	?
Dilaton-Gauss-Bonnet (M, ϕ , α)	?
squashed Kaluza-Klein black holes	stable, 2000th Soda, Ishihara and others
black strings and branes	Gregory and Laflamme 1993
black rings, saturns, etc	? (Heuristic arguments and analogies)

 $\mathsf{K}.\mathsf{Z}.=\mathsf{Konoplya} \text{ and } \mathsf{Zhidenko}$

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

• Bizon and Rostworowski (2011) claimed that there is numerical evidence of a weakly turbulent instability of pure AdS space-time

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

• Bizon and Rostworowski (2011) claimed that there is numerical evidence of a weakly turbulent instability of pure AdS space-time

• This claim was supported by some intuitive arguments of O. Dias and collaborators (2011) borrowed from M. T. Anderson (2006): AdS boundary conditions act like a confining box. Any excitation added to the box, after some time, could explore a configuration consistent with the conserved quantities. The conjecture is that an excitation of AdS eventually finds itself inside its Schwarzschild radius and collapses to a black hole .

• Bizon and Rostworowski (2011) claimed that there is numerical evidence of a weakly turbulent instability of pure AdS space-time

• This claim was supported by some intuitive arguments of O. Dias and collaborators (2011) borrowed from M. T. Anderson (2006): AdS boundary conditions act like a confining box. Any excitation added to the box, after some time, could explore a configuration consistent with the conserved quantities. The conjecture is that an excitation of AdS eventually finds itself inside its Schwarzschild radius and collapses to a black hole .

• In concordance with this conjecture it was *argued* in a subsequent paper of Dias (2012) that a number of asymptotically AdS space-times including a SdS BH space-time apparently look like non-linearly stable

• Bizon and Rostworowski (2011) claimed that there is numerical evidence of a weakly turbulent instability of pure AdS space-time

• This claim was supported by some intuitive arguments of O. Dias and collaborators (2011) borrowed from M. T. Anderson (2006): AdS boundary conditions act like a confining box. Any excitation added to the box, after some time, could explore a configuration consistent with the conserved quantities. The conjecture is that an excitation of AdS eventually finds itself inside its Schwarzschild radius and collapses to a black hole .

• In concordance with this conjecture it was *argued* in a subsequent paper of Dias (2012) that a number of asymptotically AdS space-times including a SdS BH space-time apparently look like non-linearly stable

• By now, in my opinion, there is no clearness in this issue: alternative non-linear computations or possibly higher order perturbative calculations would help...

Conclusions

By now, we know a lot of about various (in)stabilities of black holes and branes in four and higher dimensions in the linear regime, but far from everything....

Conclusions

By now, we know a lot of about various (in)stabilities of black holes and branes in four and higher dimensions in the linear regime, but far from everything....

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

We know not much about possible nonlinear (in)stabilities in higher dimensions...

Puc.: The qualitative phase diagram for the black objects in $D \ge 6$ (taken from an Emparan's paper). The horizontal and vertical axes correspond, respectively, to the spin and area of a black object. If thermal equilibrium is not imposed, multirings are possible in the upper region of the diagram.