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Four Laws of Black Hole Dynamics





surface gravity

rotation frequency

H

A
horizon
  area

ZEROTH LAW
Surface gravity κ is constant over the horizon of
a stationary black hole

FIRST LAW
Mass M and angular momentum J of BH
change according to [Bardeen, Carter & Hawking 1973]

δM − ωH δJ =
κ

8π
δA

SECOND LAW
In any physical process involving one or several
BHs with or without an environment [Hawking 1971]

δA > 0

THIRD LAW
It is impossible to achieve κ = 0 in any process

Luc Blanchet (GRεCO) First law of binary black hole dynamics JGRG 2012, Tokyo 2 / 34



Four Laws of Black Hole Dynamics





surface gravity

rotation frequency

H

A
horizon
  area

ZEROTH LAW
Surface gravity κ is constant over the horizon of
a stationary black hole

FIRST LAW
Mass M and angular momentum J of BH
change according to [Christodoulou 1970, Smarr 1973]

M − 2ωH J =
κ

4π
A

SECOND LAW
In any physical process involving one or several
BHs with or without an environment [Hawking 1971]
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Fourty Years of BH Thermodynamics [Bekenstein 1972, Hawking 1976]

Using arguments involving a piece of matter with entropy thrown into a BH,
Bekenstein derived the BH entropy

SBH = αA

This would require TBH = κ
8πα but the thermodynamic temperature of a

classical BH is absolute zero since a BH is a perfect absorber

However Hawking proved that quantum particle creation effects near a BH
result in a black body temperature TBH = κ

2π . This leads to the famous

Bekenstein-Hawking entropy of a stationary black hole

SBH =
c3k

~G
A
4

The analogy between BH dynamics and the laws of thermodynamics is complete
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Toward a Generalized First Law for a System of BHs

S r

 r



H

The mass and the angular momentum of the BH are given by Komar surface
integrals at spatial infinity

M = − 1

8π
lim
r→∞

∮
Sr

∇µtν dSµν

J =
1

16π
lim
r→∞

∮
Sr

∇µφν dSµν

where tµ and φµ are the two stationary and axi-symmetric Killing vectors
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Toward a Generalized First Law for a System of BHs

The first law of BH dynamics expresses the change

δQ = δM − ωH δJ

in the Noether charge Q between two nearby BH
configurations, where Q is associated with the
Killing vector

Kµ = tµ + ωH φ
µ

which is the null generator of the BH horizon

K

congruence 
of horizon's
generators
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Toward a Generalized First Law for a System of BHs

A generalized First Law valid for systems of BHs can be obtained when the
geometry admits a Helical Killing Vector (HKV)

Kµ∂µ = ∂t + Ω ∂ϕ

where ∂t is time-like and ∂ϕ is space-like (with closed orbits), even when ∂t
and ∂ϕ are not separately Killing vectors

This applies to the case of two Kerr BHs moving on exactly circular orbits
with orbital frequency Ω

The two BHs should be in corotation, so that ωH should approximately be
equal to Ω. In particular the spins should be aligned with the orbital angular
momentum
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Toward a Generalized First Law for a System of BHs


L

S

S1 2m

m
2

1

H

H

H
=

CM






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Toward a Generalized First Law for a System of BHs

1 With the Helical Killing Vector Kµ∂µ = ∂t + Ω ∂ϕ the change in the
associated Noether charge is given by

δQ = δM − Ω δJ

provided that the space-time is asymptotically flat [Friedman, Uryū & Shibata 2002]

2 However exact solutions of the Einstein field equations with Helical Killing
symmetry cannot be asymptotically flat since they are periodic which
contradicts the decrease of the Bondi mass at J +

[Gibbons & Stewart 1983]
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Toward a Generalized First Law for a System of BHs

J

J

+

-

I0

Physical situation

no incoming
   radiation
   condition

standing waves 
     at infinity

J

J

+

-

I0

Situation with the HKV
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Looking at the Conservative Part of the Dynamics

One way to deal with the problem is to look at approximate solutions which
are asymptotically flat. A possible solution is to suppress radiation degrees of
freedom by imposing a condition of conformal flatness for the spatial metric
[Isenberg & Nester 1980; Wilson & Mathews 1989]

Here we follow a different route which is to consider only the conservative
part of the dynamics in a post-Newtonian (PN) expansion, neglecting the
dissipative effects due to the emission of gravitational radiation

Thus we derive the First Law for a class of conservative PN space-times
admitting a HKV and describing point particles (possibly with spins) moving
on an exactly circular orbit
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Two Point Particles on an Exactly Circular Orbit

K
K K1

u
1



 

particle's trajectories

light cylinder

time

space

Luc Blanchet (GRεCO) First law of binary black hole dynamics JGRG 2012, Tokyo 11 / 34



Conservative versus Dissipative Dynamics in PN theory

Internal acceleration of a matter system is written as a formal PN expansion

dv

dt
= AN +

1

c2
A1PN +

1

c4
A2PN +

1

c5
A2.5PN

+
1

c6
A3PN +

1

c7
A3.5PN +

1

c8
A4PN +O

(
1

c9

)

Naive split would be to say that conservative effects are those which carry an
even power of 1/c, while dissipative effects, linked to gravitational radiation
reaction, are those which carry an odd power of 1/c

Luc Blanchet (GRεCO) First law of binary black hole dynamics JGRG 2012, Tokyo 12 / 34



Conservative versus Dissipative Dynamics in PN theory

This is correct at leading 2.5PN order where the force derives from a scalar in
an appropriate gauge, A2.5PN = ∇V2.5PN with [Burke & Thorne]

V2.5PN(x, t) = −1

5
xixjI

(5)
ij (t)

This term would change sign if we change the prescription of retarded
potentials to the advanced potentials

This is still correct at sub-leading order 3.5PN where the force involves both
scalar and vector potentials given by [Blanchet 1997]

V3.5PN =
1

189
xixjxkI

(7)
ijk(t)− 1

70
x2xixjI

(7)
ij (t)

V i3.5PN =
1

21
x〈ixjxk〉I

(6)
jk (t)− 4

45
εijkx

jxlJ
(5)
kl (t)

which also change sign from retarded to advanced potentials
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Dissipative Tail Effect in the PN Dynamics

However the naive split fails starting at 4PN order because of the appearance of
tails in the radiation reaction force [Blanchet & Damour 1988]

V4PN = −4M

5
xixj

∫ t

−∞
dt′ I

(7)
ij (t′) ln

(
t− t′

2r

)
This term is not invariant when we go from retarded to advanced potentials

Tail of GW
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Logarithms at 4PN order in the Conservative Dynamics

With the HKV we have at our disposal the binary’s orbital period P = 2π/Ω.
We split

ln

(
t− t′

2r

)
= − ln

( r
P

)
+ ln

(
t− t′

2P

)

Tails produce a conservative 4PN logarithmic term

V4PN = −4M2

5
xixj

[
−I(6)

ij (t) ln
( r
P

)
︸ ︷︷ ︸

conservative 4PN log term

+

∫ t

−∞
dt′ I

(7)
ij (t′) ln

(
t− t′

2P

)
︸ ︷︷ ︸

dissipative term (neglected)

]

We shall see appearing at 4PN and higher orders like 5PN some logarithmic
contributions in the conservative part of the dynamics of binary black holes
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Short History of the PN Approximation

Equations of motion

1PN equations of motion [Lorentz &

Droste 1917; Einstein, Infeld & Hoffmann 1938]

Radiation-reaction controvercy [Ehlers

et al 1979; Walker & Will 1982]

2.5PN equations of motion and GR
prediction for the binary pulsar
[Damour & Deruelle 1982; Damour 1983]

The “3mn” Caltech paper [Cutler,

Flanagan, Poisson & Thorne 1993]

3.5PN equations of motion [Jaranowski

& Schäfer 1999; BF 2001; ABF 2002; BI 2003;

Itoh & Futamase 2003, Foffa & Sturani 2011]

Ambiguity parameters resolved [DJS

2001; BDE 2003]

Radiation field

1918 Einstein quadrupole formula

1940 Landau-Lifchitz formula

1960 Peters-Mathews formula

EW moments [Thorne 1980]

BD moments and wave generation
formalism [BD 1989; B 1995, 1998]

1PN phasing [Wagoner & Will 1976; BS

1989]

Test-particle limit using BH
perturbations [Tagoshi & Sasaki 1994]

2PN waveform [BDIWW 1995]

3.5PN phasing and 3PN waveform
[BFIJ 2003, BFIS 2007]

Ambiguity parameters resolved [BI

2004; BDEI 2004, 2005]
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The Gravitational Chirp of Compact Binaries

The waveform is obtained by matching a high-order post-Newtonian waveform
describing the long inspiralling phase and a highly accurate numerical waveform
describing the final merger and ringdown phases
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3.5PN Equations of Motion of Compact Binary Systems
v
1

y
1

y
2

r
12

v
2

Explicit EOM for non-spinning compact binaries

dvi1
dt

= −Gm2

r2
12

ni12

+
1

c2

1PN︷ ︸︸ ︷{[
5G2m1m2

r3
12

+
4G2m2

2

r3
12

+
Gm2

r2
12

(
3

2
(n12v2)2 − v2

1 − 2v2
2

)]
ni12 + · · ·

}

+
1

c4
[· · · ]︸ ︷︷ ︸

2PN

+
1

c5
[· · · ]︸ ︷︷ ︸

2.5PN

+
1

c6
[· · · ]︸ ︷︷ ︸

3PN

+
1

c7
[· · · ]︸ ︷︷ ︸

3.5PN

+O
(

1

c8

)

Spin effects arise at orders 1.5PN for the spin-orbit and 2PN for the spin-spin.
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Mass and Angular Momentum of Compact Binaries

It is convenient tu use the gauge invariant PN parameter

x =

(
GmΩ

c3

)3/2

with the mass parameters m = m1 +m2 and ν = m1m2/m
2.

Conservative PN energy for circular orbits

E = −1

2
mν

{
1 +

1PN︷ ︸︸ ︷(
−3

4
− ν

12

)
x+

2PN︷ ︸︸ ︷
[· · · ]x2 +

3PN︷ ︸︸ ︷
[· · · ]x3

+

4PN︷ ︸︸ ︷(
· · ·+ 448

15
ν lnx

)
x4 +

5PN︷ ︸︸ ︷(
· · ·+

[
−4988

35
− 6565ν

]
ν lnx

)
x5 +O

(
x6
)}

The 4PN and 5PN conservative logarithmic terms have been computed recently
[Blanchet, Detweiler, Le Tiec & Whiting 2010]
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Mass and Angular Momentum of Compact Binaries

The angular momentum J is checked to satisfy for all the terms up to 3PN order,
and also for the 4PN and 5PN log terms, the

Thermodynamic relation valid for circular orbits

∂M

∂Ω
= Ω

∂J

∂Ω

which constitutes the first ingredient in the First Law of binary black holes.

The thermodynamic relation states that the flux of energy emitted in the
form of gravitational waves is proportional to the flux of angular momentum

It is used in numerical computations of the binary evolution based on a
sequence of quasi-equilibrium configurations [Gourgoulhon et al 2002]
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The Redshift Observable [Detweiler 2008]

The geometry has a Helical Killing Vector (HKV) asymptotically given by

Kµ∂µ = ∂t + Ω ∂ϕ

The four-velocity uµ1 of the particle must be proportional to the HKV at the
location of the particle

Kµ
1 = z1 u

µ
1

In suitable coordinate systems z1 reduces to the inverse of the zeroth
component of the particle’s velocity,

z1 =
1

ut1
=
√
−(gµν)1 v

µ
1 v

ν
1

The relation z1(Ω) is a well-defined observable which can be computed to
high precision in PN theory
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The Redshift Observable [Detweiler 2008]

The redshift obervable was introduced
in self-force computations of the motion
of a particle around the black hole in
the limit m1/m2 � 1

It represents the redshift of light rays
emitted by the particle and received at
infinity along the symmetry axis

z1 =
(kµu

µ)rec

(kµuµ)em

=
1

ut1

This is also the Killing energy of the
particle associated with the HKV

z

m

m 1

2

EM-ray

k

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Post-Newtonian Computation of the Redshift Observable

The PN metric is to be evaluated at the
location of one of the particles

z1 =

[
− (gµν)1︸ ︷︷ ︸
regularized metric

vµ1 v
ν
1

]1/2

v
1

y
1

y
2

r
12

v
2

A self-field regularization is required

Hadamard’s regularization [Hadamard 1932; Schwartz 1978] is convenient but has
been shown to yield ambiguities at the 3PN order

Dimensional regularization [’t Hooft & Veltman 1972] is extremely powerful and is
free of any ambiguity at 3PN order
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High-order PN result for the Redshift Observable
[Blanchet, Detweiler, Le Tiec & Whiting 2010ab]

Posing X1 = m1/m and still x = (GmΩ/c3)3/2, the redshift observable of
particle 1 through 3PN order and augmented by 4PN and 5PN logarithmic
contributions is

z1 = 1 +

(
−3

2
X1 +

ν

2

)
x+

1PN︷ ︸︸ ︷
[· · · ] x2 +

2PN︷ ︸︸ ︷
[· · · ] x3 +

3PN︷ ︸︸ ︷
[· · · ] x4

+

(
· · ·+ [· · · ] ν lnx︸ ︷︷ ︸

4PN log

)
x5 +

(
· · ·+ [· · · ] ν lnx︸ ︷︷ ︸

5PN log

)
x6 +O

(
x7
)

We can re-expand in the small mass-ratio limit ν = m1m2/m
2 � 1 so that

z1 = zSchw + ν zSF︸ ︷︷ ︸
self-force

+ ν2 zPSF︸ ︷︷ ︸
post-self-force

+O(ν3)
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High-order PN fit to the Numerical Self Force

The 3PN prediction agrees with the SF value with 7 significant digits

3PN value SF fit

a3 = − 121
3 + 41

32π
2 = −27.6879026 · · · −27.6879034± 0.0000004

Post-Newtonian coefficients are fitted up to 7PN order

PN coefficient SF value
a4 −114.34747(5)
a5 −245.53(1)
a6 −695(2)
b6 +339.3(5)
a7 −5837(16)
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Comparison with the Self-Force Prediction
[Blanchet, Detweiler, Le Tiec & Whiting 2010]

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 5  6  7  8  9  10

−
u

T S
F

y-1

N

1PN

2PN

3PN

4PN

5PN

6PN

7PN

Exact
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First Law of Binary Point Particle Mechanics
[Le Tiec, Blanchet & Whiting 2011]

1 We find by direct computation that the redshift observables z1 and z2 are
related to the ADM mass and angular momentum by

∂M

∂m1
− Ω

∂J

∂m1
= z1 and (1↔ 2)

2 Finally those relations can be summarized into the

First law of binary point-particles mechanics

δM − Ω δJ = z1 δm1 + z2 δm2

The first law tells how the ADM quantities change when the individual masses m1

and m2 of the particles vary (keeping the frequency Ω fixed)

3 An interesting consequence is the remarkably simple relation

First integral of the first law

M − 2ΩJ = z1m1 + z2m2
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Agreement with the Generalized First Law of Mechanics
[Friedman, Uryū & Shibata 2002]

Space-time generated by black holes and perfect fluid matter distributions

Globally defined HKV field

Asymptotic flatness

Generalized law of perfect fluid and black hole mechanics

δM − ΩδJ =

∫
Σ

[
µ̄∆(dm) + T̄ ∆(dS) + wµ∆(dCµ)

]
+
∑
n

κn
8π

δAn

where ∆ denotes the Lagrangian variation of the matter fluid, where dm is the
conserved baryonic mass element, and where T = zT and µ = z(h− Ts) are the
redshifted temperature and chemical potential

In the point-particle limit for the fluid bodies (without BHs) one recovers formally
the PN result
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First law of mechanics for binary point particles with spins
[Blanchet, Buonanno & Le Tiec 2012]

The spins must be aligned or anti-aligned with the orbital angular momentum.

First law of binary point particles with spins

δM − Ω δJ =
2∑

n=1

[
zn δmn + (Ωn − Ω) δSn

]
The precession frequency Ωn of the spins obeys

dSn
dt

= Ωn × Sn

The total angular momentum is related to the orbital angular momentum by

J = L+ S1 + S2
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Analogies with single and binary black holes

1 Single black hole [Bardeen et al 1972]

δM − ωH δJ =
κ

8π
δA

2 Two black holes [Friedman, Uryū & Shibata 2002]

δM − Ω δJ =
2∑

n=1

κn
8π
δAn

3 Two point particles [Le Tiec, LB & Whiting 2012]

δM − Ω δJ =
2∑

n=1

znδmn

4 Two spinning point particles [LB, Buonanno & Le Tiec 2012]

δM − Ω δJ =
2∑

n=1

[
zn δmn + (Ωn − Ω) δSn

]
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Analogies with single and binary black holes

1 Single black hole [Smarr 1973]

M − 2ωH J =
κ

4π
A

2 Two black holes [Friedman, Uryū & Shibata 2002]

M − 2Ω J =
2∑

n=1

κn
4π
An

3 Two point particles [Le Tiec, LB & Whiting 2012]

M − 2Ω J =
2∑

n=1

znmn

4 Two spinning point particles [LB, Buonanno & Le Tiec 2012]

M − 2Ω J =
2∑

n=1

[
znmn + 2 (Ωn − Ω)Sn

]
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Analogies with single and binary black holes


L

S

S1 2m

m
2

1

CM

For point particles which have no finite extension the notion of rotation frequency
of the body is meaningless. Thus the First Law is valid for arbitrary aligned or
anti-aligned spins
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The first law for Binary Corotating Black Holes

1 To describe extended bodies such as black holes one must suplement the
point particles with some internal constitutive relation of the type

mn = mn

(
mirr
n , Sn

)
where Sn is the spin and mirr

n is some “irreducible” constant mass

2 We define the response coefficients associated with the internal structure

cn =

(
∂mn

∂mirr
n

)
Sn

, ωn =

(
∂mn

∂Sn

)
mirr

n

where in particular ωn is the rotation frequency of the body

3 The First Law becomes

δM − Ω δJ =
2∑

n=1

[
zn cn δm

irr
n + (zn ωn + Ωn − Ω) δSn

]
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The First Law for Binary Corotating Black Holes

Corotation condition for extended particles [LB, Buonanno & Le Tiec 2012]

zn ωn = Ω− Ωn

The First Law is then in agreement with the first law of two black holes
[Friedman, Uryū & Shibata 2002]

δM − Ω δJ =
2∑

n=1

κn
8π
δAn

provided that we make the identifications

mirr
n ←→

√
An
16π

zn cn ←→ 4mirr
n κn
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Conclusions

1 Compact binary star systems are the most important source for gravitational
wave detectors LIGO/VIRGO and LISA

2 Post-Newtonian theory has proved to be the appropriate tool for describing
the inspiral phase of compact binaries up to the ISCO

3 For massive BH binaries the PN templates should be matched to the results
of numerical relativity for the merger and ringdown phases

4 The PN approximation is now tested against different approaches such as the
SF and performs extremely well

5 The conservative part of the dynamics of compact binaries exhibits a First
Law which is the analogue of the First Law of black hole mechanics
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