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Abstract
In massive gravity,we find a series of the metrics for which the effective energy mo-
mentum tensor from the graviton mass behave as a cosmological constant. As a
result,the metric that is exact solution in general relativity with cosmological con-
stant is a exact solution also in massive gravity. Especially,these solutions include
expanding cosmological solutions with flat,open and closed spacial curvature.

1 Introduction

It is very intriguing to explore whether or not the graviton can have a mass. The first attempt to add
a mass term to the gravity action was made by Fierz and Pauli [1], who considered the quadratic action
for the graviton hµν in flat space with the mass term

m2
(
hµνh

µν − h2
)
. (1)

The linear theory with the Fierz-Pauli mass term is ghost-free. However, the theory does not reproduce
general relativity in the massless limit m → 0. The extra three degrees of freedom in a massive spin
2 survive even in this limit, and therefore the prediction for light bending is away from that of general
relativity, which clearly contradicts solar-system tests. This is called the vDVZ discontinuity [2].

As pointed out by Vainshtein [3], the discontinuity can in fact be cured by going beyond the linear
theory. Massive gravity has a new length scale called the Vainshtein radius, below which the nonlinearities
of the theory come in and the effect of the extra degrees of freedom is screened safely. The Vainshtein
radius becomes larger as m gets smaller, and thereby a smooth massless limit is attained.

However, the very nonlinearities turned out to cause another trouble. Boulware and Deser argued
that there appears the sixth scalar degree of freedom at nonlinear order, which has a wrong sign kinetic
term, i.e., the sixth mode is a ghost [4]. The presence of the Boulware-Deser (BD) ghost has hindered
us from constructing a consistent theory of massive gravity.

Recently, a theoretical breakthrough in this field has been made. Adding higher-order self-interaction
terms and tuning appropriately their coefficients, de Rham and collaborators successfully eliminated
the dangerous scalar mode from the theory in the decoupling limit [5, 6]. Then, Hassan and Rosen
established a complete proof that the theory does not suffer from the BD ghost instability to all orders
in perturbations and away from the decoupling limit [7]. Thus, there certainly exists a nonlinear theory
of massive gravity that is free of the BD ghost.

2 Action of Ghost Free Massive Gravity

The action of the ghost free massive gravity [6] is following:

S = SEH + Smass + Smatter, (2)
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here,SEH and Smatter is usual Einstein-Hilbert action and matter’s action. The additional mass term
Smass is

Smass =
M2

PL

2

∫
d4x

√
−gm2 (U2 + α3U3 + α4U4) . (3)

with graviton mass m and free parameters α3, α4. Here,

U2 := [K]2 − [K2], (4)

U3 := [K]3 − 3[K][K2] + 2[K3], (5)

U4 := [K]4 − 6[K2][K]2 + 8[K3][K] + 3[K2]2 − 6[K4]. (6)

”[ ]” represents trace:

[K] = Kµ
µ, [K2] = Kµ

νKν
µ, · · · , (7)

and Kµ
ν is

Kµ
ν = δµν −

√
gµρ∂ρϕa∂νϕbηab. (8)

the Square root of a tensor is defind as follow:√
Aµ

ρ

√
Aρ

ν = Aµ
ν . (9)

ϕa (a = 0, 1, 2, 3) are scalar fields called Stückelberg field.
In the action,Stückelberg fields appear throught the conbination ∂µϕ

a∂νϕ
bηab ≡ Σµν , and , We call

this tensor “fiducial metric”. In the coordinate

x0 = ϕ0, x1 = ϕ1, x2 = ϕ2, x3 = ϕ3, (10)

the fiducial metric becomes the diagonal Minkowski metric:

Σµν = ηµν , (11)

and,this coordinate called “unitary gauge”.
The equation of motion derived from this action is

Gµν +m2Xµν =
1

M2
PL

Tµν . (12)

Here,Gµν is the Einstein tensor,Tµν is the energy momentum tensor of the matter,and m2Xµν is effective
energy momentum tensor from graviton mass:

m2Xµν =
1√
−g

δSmass

δgµν
(13)

Note that if m2Xµν ∝ gµν , this term behave as a cosmological constant, therefore the equation of motion
coincides with the Einstein equation with a cosmological constant.

3 Cosmological Solutions

In massive gravity, a change of coordinate transforms not only gµν but also Σµν . So, in the coordinate
where gµν is the usual diagonal form:

gµνdx
µdxν = −dt2 + a2(t)

[
dr2

1−Kr2
+ r2dΩ2

]
, (14)
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the fiducial metric Σµν is a generally complicated form.
The first attempt to find a cosmological solution was made by D’Amico et al [8]. In this analysis,

the free parameterα3, α4 set to zero,the spacial curvature is flat , and in the familiar diagonal FLRW
coordinate of teh physical metric,the fiducial metric is the diagonal Minkowski form (ϕµ = xµ):

gµνdx
µdxν = −dt2 + a2(t)δijdx

idxj (15)

Σµνdx
µdxν = ηµνdx

µdxν , (16)

or has same symmetry as the physical metric(ϕ0 = f(t), ϕi = xi):

gµνdx
µdxν = −dt2 + a2(t)δijdx

idxj , (17)

Σµνdx
µdxν = −ḟ2(t)dt2 + δijdx

idxj . (18)

In both cases, equation of motion implies ȧ = 0, as a result ,our univers can not expand.
To obtain the expanding FLRW solution,we must consider more complicated case. One way is to

consider the open FLRW space time [9] ,or more general fiducial metric [8] [10]. But , we take another
approach. We choose the coordinate where the fiducial metric is the diagonal Minkowski form(unitary
gauge), and the physical metric is not usual diagonal form.

Before our work,the de Sitter solution was already found [11]. In this analysis,the de Sitter space time
is described by the Painlevé-Gullstrand (PG) coordinate in the unitary gauge:

gµνdx
µdxν = −κ2dt2 + α̃2

(
dr ±

√
Λ

3
κrdt

)2

+ α̃2r2dΩ2 (19)

Σµνdx
µdxν = ηµνdx

µdxν . (20)

In addition, free parameter α3, α4 was choosed as following:

α3 =
1

3
(α− 1), α4 =

1

12
(α2 − α+ 1), α =

α̃

1− α̃
. (21)

In this case,the effective energy momentum tensor from the graviton mass is

m2Xµν =
m2

α
gµν . (22)

Therefore, the equation of motions are Einstein equation with the effective coupling constant m2/α.So
for Λ = m2/α,this de Sitter solution is an exact solution in massive gravity.

We extend this analysis to the FLRW space time. The key observation is that ,as the de Sitter space
time, the FLRW space time can be described by the PG coordinate[13].So,we impose this form of the
physical metric in the unitary gauge:

gµνdx
µdxν = −κ2dt2 +

α̃2

1−Kα̃2r2/a2(t)

(
dr ± ȧ

a
κrdt

)2

+ α̃2r2dΩ2 (23)

Σµνdx
µdxν = ηµνdx

µdxν . (24)

We use same parameters as (21). In the set up ,the effective energy momentum tensor from the graviton
mass is same as eq.(22),and,as expected,the equation of motion is the Einstein equation with a cosmo-
logical constant. So, as in general relativity,these FLRW space times are solutions in massive gravity.

We can transform the coordinate to the familiar diagonal FLRW coordinate by r → R = α̃r/a(t), t →
T = κt,

gµνdx
µdxν = −dT 2 + a2(T )

[
dR2

1−KR2
+R2dΩ2

]
(25)

Σµνdx
µdxν = −

(
1

κ2
− ȧ2R2

α̃2

)
dT 2 +

2aȧR

α̃2
dTdR+

a2

α̃2
(dR2 +R2dΩ2). (26)

In this coordinate,the fiducial metric is inhomogenious form. Thus,the fiducial metric is the form out of
ansatz eq.(16),eq.(18).
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4 More General Solutions

We can generalize our cosmological solutions. Instead of the PG form FLRW metric (23) ,we use the
following general PG form metric:

gµνdx
µdxν = −U2(xµ)dt2 + V 2(xµ) (dr + f(xµ)dt)

2
+ α̃2r2dΩ2. (27)

Here,U, V, f are arbitrary functions. Also,in this set up,the effective energy momentum tensor is same as
(22). As a result,the metric that is an exact solution in general relativity with a cosmological constant
,is a exact solution also in massive gravity.

For example,the Lemâıtle-Tolman-Bondi (LTB) metric can be described by PG form[13]. Therefore
the LTB solution is an exact solution in massive gravity. we can use this solution to study spherical
collapse of a perfect fluid in massive gravity.

5 Concludion

We have found new cosmological solutions in massive gravity with flat,open,and closed spatial geometries.
Our solutions can be extended to general spherical space time,including LTB space time. In both cases,
the key was that general PG form metric (27)gives rise to an effective energy momentum tensor of a
cosmological constant m2/α for the special choice of the parameters (21). This is essential for being able
to get analytic solutions in massive gravity easily from the seed solutions in general relativity.
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