

Atsushi Nishizawa, JGRG 22(2012)111423

"Probing for massive gravitational-wave background with a

ground-based detector network"

RESCEU SYMPOSIUM ON

GENERAL RELATIVITY AND GRAVITATION

JGRG 22

November 12-16 2012

Koshiba Hall, The University of Tokyo, Hongo, Tokyo, Japan

Probing for massive GW background with a ground-based detector network

Atsushi Nishizawa (YITP, Kyoto Univ.)

Collaborator: Kazuhiro Hayama (NAOJ)

Nov. 12-16, 2012, JGRG22 @ Tokyo Univ.

So far, various modified gravity theories have been suggested. (Scalar-tensor theory, f(R) gravity, higher derivative gravity, bimetric gravity, nonlinear massive gravity etc.)

Those theories could alter tensor perturbations and predict the properties of GWs different from GR:

- massive gravitons
- different phase evolution of GWs
- additional GW polarizations (scalar & vector pols.)

 \int

GW observation can be utilized for

- direct test of general relativity
- probing the extended theories beyond GR

Here we focus on massive graviton and its detectability with GW detectors.

Massive graviton & GW

Dispersion relation of graviton

- minimum frequency of GW $\omega_{
 m min}=m_g$
- $\omega^2 = m_g^2 + k^2$
- propagating speed of GW (group velocity)

$$v_g(\omega;m_g) \equiv \frac{d\omega}{dk} = \sqrt{1 - \frac{m_g^2}{\omega^2}}$$

Modification of GW waveform from a compact binary

[Will 1998, Berti et al. 2005, Yagi & Tanaka 2010]

aLIGO: $m_g \lesssim 10^{-22} \, \mathrm{eV}$ LISA: $m_g \lesssim 10^{-25} \, \mathrm{eV}$

• phase velocity of GW

$$v_p(\omega; m_g) \equiv \frac{\omega}{k} = \left(\sqrt{1 - \frac{m_g^2}{\omega^2}}\right)^{-1}$$

GW polarizations

In general metric theory of gravity, six polarizations are allowed. [Eardley et al. 1973, Will 1993].

Current mass constraints

Solar system	$m_g \lesssim 10^{-21} {\rm eV}$	[Talmadge et al. 1988, Will 1998
Galaxy cluster	$m_g \lesssim 10^{-29} {\rm eV}$	[Goldhaber & Nieto 1974]
Weak lensing	$m_g \lesssim 10^{-31} {\rm eV}$	[Choudhury et al. 2004]
СМВ	$m_g \lesssim 10^{-30} {\rm eV}$	[Dubovsky et al. 2010]

The above is static bounds based on the modification of Newtonian potential (background level).

Binary pulsar $m_g \lesssim 10^{-20}\,{
m eV}$ [Finn & Sutton 2002]

This bound is applied to only tensor polarization mode.

Constraints on scalar and vector mode of GW is NOT so strong and they can be quite massive.

GW background

Here we consider massive GW background.

Detector output of GW background

Energy density of GW background

$$\Omega_{\rm gw}(f) \equiv \frac{1}{\rho_c} \frac{d\rho_{\rm gw}}{d\ln f}$$

tensor
$$\Omega_{gw}^T \equiv \Omega_{gw}^+ + \Omega_{gw}^{\times}$$
 $(\Omega_{gw}^+ = \Omega_{gw}^{\times})$,

vector
$$\Omega_{gw}^{\nu} \equiv \Omega_{gw}^{x} + \Omega_{gw}^{y}$$
 $(\Omega_{gw}^{x} = \Omega_{gw}^{y})$,
scalar $\Omega_{gw}^{S} \equiv \frac{1}{3} \left(\frac{1+2\kappa}{1+\kappa} \right) (\Omega_{gw}^{b} + \Omega_{gw}^{\ell})$, $\kappa \equiv \Omega_{gw}^{\ell} / \Omega_{gw}^{b}$

Correlation analysis of GW background

Single detector cannot distinguish GWB and random detector noise. Also in most cases GW signal is small compared to noise.

Signal of detector 1: $s_1(t) = h(t) + n_1(t)$ Signal of detector 2: $s_2(t) = h(t) + n_2(t)$

Signal to noise ratio

$$\mathrm{SNR} \approx \frac{\int dt \, h^2(t)}{\int dt \, n_1(t) n_2(t)} \propto \sqrt{T}$$

 $h(t) \ll n(t)$

Correlation signal

Correlation signal in a frequency bin:

$$\mu_i(f) = \frac{3H_0^2}{10\pi^2} T f^{-3} \sum_A \gamma_i^A \Omega_{\rm gw}^A(f) \Delta f$$

Overlap reduction function

tensor
$$\gamma_{IJ}^T(f; m_g^T) \equiv \frac{5}{2} \int_{S^2} \frac{d\hat{\Omega}}{4\pi} \left(F_I^+ F_J^+ + F_I^{\times} F_J^{\times} \right) \exp\left[i \frac{2\pi f \,\hat{\Omega} \cdot \Delta \vec{X}}{v_p(f; m_g^T)} \right] ,$$

vector
$$\gamma_{IJ}^V(f;m_g^V) \equiv \frac{5}{2} \int_{S^2} \frac{d\hat{\Omega}}{4\pi} \left(F_I^x F_J^x + F_I^y F_J^y\right) \exp\left[i\frac{2\pi f\,\hat{\Omega}\cdot\Delta\vec{X}}{v_p(f;m_g^V)}\right] ,$$

$$\begin{split} \text{scalar} \quad & \gamma_{IJ}^S(f; m_g^S) \equiv \frac{15}{1+2\kappa} \int_{S^2} \frac{d\hat{\Omega}}{4\pi} \left(F_I^b F_J^b + \kappa F_I^\ell F_J^\ell \right) \exp\left[i \frac{2\pi f \,\hat{\Omega} \cdot \Delta \vec{X}}{v_p(f; m_g^S)} \right] \\ & \kappa \equiv \Omega_{\text{gw}}^\ell / \Omega_{\text{gw}}^b \end{split}$$

$$\gamma_{IJ}^T(f;m_g^T) \equiv \frac{5}{2} \int_{S^2} \frac{d\hat{\Omega}}{4\pi} \left(F_I^+ F_J^+ + F_I^\times F_J^\times \right) \exp\left[i \frac{2\pi f \,\hat{\Omega} \cdot \Delta \vec{X}}{v_p(f;m_g^T)} \right]$$

@ low freq. \rightarrow Const. @ high freq. \rightarrow Damping oscillation

For massive graviton, effective distance between detectors is smaller than massless case.

$$\frac{\Delta \vec{X}}{c} \longrightarrow \frac{\Delta \vec{X}}{v_p}$$

stronger correlation

low freq. cutoff

Case (i): small mass Case (ii): intermediate mass Case (iii): large mass

Case (i): small mass

Case (ii): intermediate mass Case (iii): large mass

Indistinguishable from massless case

Fisher matrix & graviton mass determination

Typical mass scale detectable with a GW detector:

$$m_g \approx 6.58 \times 10^{-14} \left(\frac{f_g}{100 \,\mathrm{Hz}}\right) \,\mathrm{eV}$$

Use Fisher matrix to estimate measurement accuracy of m_g

$$F_{ab} = \sum_{i=1}^{N_{\text{pair}}} \sum_{A} \int_{0}^{\infty} df \left[\frac{C(f) \{\gamma_{i}^{A}(f)\}^{2} \partial_{a} \Omega_{\text{gw}}(f) \partial_{b} \Omega_{\text{gw}}(f)}{\mathcal{N}_{i}(f)} + \frac{\partial_{a} \gamma_{i}^{A}(f) \partial_{b} \gamma_{i}^{A}(f) + \gamma_{i}^{A}(f) \partial_{a} \partial_{b} \gamma_{i}^{A}(f)}{3\{\gamma_{i}^{A}(f)\}^{2}} \right]$$
$$C(f) \equiv \frac{9H_{0}^{4}T}{50\pi^{4}f^{6}}, \qquad \mathcal{N}_{i}(f) \equiv P_{I}(f)P_{J}(f)$$

Fisher matrix & graviton mass determination

Typical mass scale detectable with a GW detector:

$$m_g \approx 6.58 \times 10^{-14} \left(\frac{f_g}{100\,\mathrm{Hz}}\right) \,\mathrm{eV}$$

Use Fisher matrix to estimate measurement accuracy of m_g

$$\begin{split} F_{ab} &= \sum_{i=1}^{N_{\text{pair}}} \sum_{A} \int_{0}^{\infty} df \left[\frac{C(f) \{\gamma_{i}^{A}(f)\}^{2} \partial_{a} \Omega_{\text{gw}}(f) \partial_{b} \Omega_{\text{gw}}(f)}{\mathcal{N}_{i}(f)} \right. \\ & \left. + \frac{\partial_{a} \gamma_{i}^{A}(f) \partial_{b} \gamma_{i}^{A}(f) + \gamma_{i}^{A}(f) \partial_{a} \partial_{b} \gamma_{i}^{A}(f)}{3 \{\gamma_{i}^{A}(f)\}^{2}} \right] \\ C(f) &\equiv \frac{9H_{0}^{4}T}{50\pi^{4}f^{6}} , \qquad \mathcal{N}_{i}(f) \equiv P_{I}(f)P_{J}(f) \end{split}$$

We ignore the contribution from the 2nd term for safety. Then our estimate is conservative one.

Computation setup

Model of GW background:

$$\Omega_{\rm gw}(f) = \Omega_{\rm gw,0} \left(\frac{f}{f_0}\right)^{n_t} \Theta[f - f_g]$$

We assume only a single pol. mode exists. (not mixture of 3 pols.)

Free parameters: $\Omega_{\mathrm{gw},0},\,n_t,\,f_g$

Fiducial values: $\Omega_{\mathrm{gw},0} = 10^{-7}, \, n_t = 0.$ & all f_g

Detector network:

Consider 4 GW detectors: aLIGO (H1&L1), aVIRGO, KAGRA Correlation pairs are HL, HV, LV, HK, KL, KV. (all noise spectra are assumed to be that of aLIGO.)

SNR of a detector network

Detector low freq. cutoff = 10 Hz.

SNR threshold = $10 \rightarrow \text{High freq. cutoff} = 300 \text{ Hz}$

Mass measurement accuracy

$$\Rightarrow \quad 6.7 \times 10^{-15} \, \text{eV} \le m_g \le 2.0 \times 10^{-13} \, \text{eV} \qquad \text{for} \quad \begin{array}{l} \Omega_{\text{gw},0} = 10^{-7} \\ n_t = 0 \end{array}$$

Summary

- Search for graviton mass and polarization enable us to perform model-independent test of gravity and to constrain alternative theory of gravity.
- We considered massive GWB and showed that if GWB is detected, advanced-detector network can search for graviton mass in the range.

 $6.7 \times 10^{-15} \,\mathrm{eV} \le m_g \le 2.0 \times 10^{-13} \,\mathrm{eV}$

Note1: If the correlation signal is a mixture of 3 pol. modes, we can robustly separate these mode with a detector network as shown in

[AN et al., PRD 79, 082002 (2009); PRD 81, 104043 (2010)]

- Note2: If we take the Fisher matrix for $\gamma(f)$ into account, detectable mass range would broaden.
- Note3: It'd be interesting to consider space-based detectors and pulsar timing, which can constrain different mass range.

Large peak on GWB spectrum?

[Gumrukcuoglu et al., arXiv:1208.5975]

21

Observational constraints on GWB

Angular response functions

[Tobar, Suzuki & Kuroda 1999]

Vector and scalar modes are also detectable with an interferometer.

Overlap reduction function (KV)

Overlap reduction function (LV)

Overlap reduction function (HV)

Overlap reduction function (KH)

Overlap reduction function (KL)

Mode separation

Correlation signal of GW at a frequency bin

$$Z_{IJ}(f) \equiv \Omega_{gw}^{T}(f)\gamma_{IJ}^{T}(f) + \Omega_{gw}^{V}(f)\gamma_{IJ}^{V}(f) + \xi \Omega_{gw}^{S}(f)\gamma_{IJ}^{S}(f)$$

In principle, three detectors allow us to separate the modes.

Separability strongly depends on $\det \Pi$. $\operatorname{SNR}(f) \propto \det \Pi(f)$

If the modes are not separable ($\det \Pi = 0$), GWB signal does not contribute to the SNR at the frequencies.

Detectors & Earth coordinate

Detector pair is completely characterized by three parameters.

SNR (single pol.)

Assume that GWB has only one polarization mode.

This is also true for current detectors.

Detectable GWB with single pol.

5 advanced detectors on the ground. [A=AIGO, C=LCGT, H=AdvLIGO(H1), L=AdvLIGO(L1), V=AdvVIRGO.]

All detectors have the same noise spectrum as that of AdvLIGO.

Observation time T = 3yr. SNR = 5

detector pair	$h_0^2 \Omega_{ m gw}^T$	$h_0^2 \Omega_{ m gw}^V$	$\xi h_0^2 \Omega_{ m gw}^S$	
A - C	$8.6 imes10^{-9}$	$8.6 imes 10^{-9}$	$4.5 imes 10^{-9}$	
A - H	$3.6 imes10^{-9}$	$1.1 imes10^{-8}$	$7.3 imes10^{-9}$	
A - L	$3.4 imes10^{-9}$	$1.2 imes10^{-8}$	$8.8 imes10^{-9}$	
A - V	$8.7 imes10^{-9}$	$2.1 imes 10^{-8}$	$1.4 imes10^{-8}$	
С - Н	$1.2 imes10^{-8}$	$8.4 imes10^{-9}$	$8.4 imes10^{-9}$	
C - L	$4.5 imes10^{-8}$	$2.8 imes10^{-8}$	$2.5 imes10^{-8}$	
C - V	$5.7 imes10^{-9}$	$6.9 imes10^{-9}$	$4.7 imes10^{-9}$	
H - L	$1.6 imes10^{-9}$	$2.0 imes10^{-9}$	$1.7 imes10^{-9}$	most sensitive
H - V	$7.1 imes10^{-9}$	$7.5 imes10^{-9}$	$4.5 imes10^{-9}$	
L - V	$6.7 imes10^{-9}$	$6.4 imes10^{-9}$	$4.3 imes10^{-9}$	

All modes are detectable with almost the same SNRs.

Detectable GWB after mode separation

Advanced detectors on the ground

[A=AIGO, C=LCGT, H=AdvLIGO(H1), L=AdvLIGO(L1), V=AdvVIRGO.]

• Assume the same noise spectrum as that of AdvLIGO.

detector set	$h_0^2 \Omega_{ m gw}^T$	$h_0^2 \Omega_{ m gw}^V$	$\xi h_0^2 \Omega_{ m gw}^S$	
A - C - H	$5.2 imes 10^{-9}$	$8.1 imes10^{-9}$	$5.5 imes10^{-9}$	
A - C - L	$6.0 imes 10^{-9}$	$1.5 imes 10^{-8}$	$8.3 imes10^{-9}$	
A - C - V	$1.3 imes10^{-8}$	$1.0 imes10^{-8}$	$6.8 imes10^{-9}$	
A - H - L	$3.8 imes10^{-9}$	$1.2 imes 10^{-8}$	$1.0 imes10^{-8}$	Node
A - H - V	$8.5 imes10^{-9}$	$2.2 imes 10^{-8}$	$2.1 imes10^{-8}$	degra
A - L - V	$6.0 imes10^{-9}$	$2.4 imes10^{-8}$	$2.3 imes10^{-8}$	(Almo
C - H - L	$1.4 imes 10^{-8}$	$1.9 imes10^{-8}$	$1.9 imes10^{-8}$	sensi
C - H - V	$1.1 imes 10^{-8}$	$1.0 imes10^{-8}$	$7.6 imes10^{-9}$	in the
C - L - V	$1.2 imes 10^{-8}$	$2.0 imes10^{-8}$	$1.7 imes10^{-8}$	a sin
H - L - V	$6.1 imes 10^{-9}$	$1.3 imes 10^{-8}$	$6.0 imes10^{-9}$	

T = 3yr. SNR = 5

Mode separation hardly degrade the SNRs. (Almost the same sensitivity to GWB in the presence of a single pol. mode)