

Yingli Zhang, JGRG 22(2012)111422

"Tunneling fields in non-linear massive gravity"

RESCEU SYMPOSIUM ON GENERAL RELATIVITY AND GRAVITATION

JGRG 22

Koshiba Hall, The University of Tokyo, Hongo, Tokyo, Japan

RESCEU SYMPOSIUM ON GENERAL RELATIVITY AND GRAVITATION

JGRG22

November 12 - 16 2012

Hawking-Moss instantons in nonlinear Massive Gravity

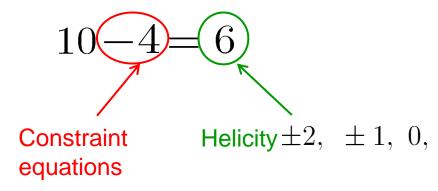
Ying-li Zhang YITP, Kyoto University

Cooperator: Ryo Saito, Misao Sasaki

arxiv: 1210.6224

In Massive Gravity (MG), the mass of graviton is non-vanishing, which breaks the gauge invariance

Generally speaking, the dof is



Recently, a non-linear construction of massive gravity theory (dRGT) is proposed, where the BD ghost is removed by specially designed non-linear terms, so that the lapse function N becomes a Lagrangian Multiplier, which removes the ghost degree of freedom.

Non-linear Massive Gravity (dRGT)

C. de Rham, G. Gabadadze, Phys. Rev. D 82, 044020 (2010);

C. de Rham, G. Gabadadze and A. J. Tolley, Phys. Rev. Lett 106, 231101 (2011);

S. F. Hassan and R. A. Rosen, JHEP 1107, 009 (2011)

$$S_{MG} = \int d^4x \sqrt{-g} \left[\frac{R}{2} + m_g^2 (\mathcal{L}_2 + \alpha_3 \mathcal{L}_3 + \alpha_4 \mathcal{L}_4) \right],$$

where

$$\cdot [\mathcal{K}] = tr\left(K_{\mu}^{\nu}\right)$$

where
$$[\mathcal{K}] = tr\left(K_{\mu}^{\nu}\right)$$
 $\mathcal{L}_{2} = \frac{1}{2}\left(\left[\mathcal{K}\right]^{2} - \left[\mathcal{K}^{2}\right]\right)$,

$$\mathcal{L}_3 = \frac{1}{6} \left(\left[\mathcal{K} \right]^3 - 3 \left[\mathcal{K} \right] \left[\mathcal{K}^2 \right] + 2 \left[\mathcal{K}^3 \right] \right),$$

$$\mathcal{L}_4 = \frac{1}{24} \left(\left[\mathcal{K} \right]^4 - 6 \left[\mathcal{K} \right]^2 \left[\mathcal{K}^2 \right] + 3 \left[\mathcal{K}^2 \right]^2 + 8 \left[\mathcal{K} \right] \left[\mathcal{K}^3 \right] - 6 \left[\mathcal{K}^4 \right] \right),$$

$$\mathcal{K}^{\mu}_{\nu} \equiv \delta^{\mu}_{\nu} - \sqrt{g^{\mu\sigma}G_{ab}(\phi)\partial_{\nu}\phi^{a}\partial_{\sigma}\phi^{b}}.$$

Self-accelerating solution is found in context of non-linear massive gravity, where two branches exist with effective cosmological constant consists of a contribution from mass of graviton.

A. E. Gumrukcuoglu et. al. JCAP 106, 231101(2011);

$$\Lambda_{\pm} = -\frac{m_g^2}{(\alpha_3 + \alpha_4)^2} \left[(1 + \alpha_3) \left(2 + \alpha_3 + 2 \alpha_3^2 - 3 \alpha_4 \right) \pm 2 \left(1 + \alpha_3 + \alpha_3^2 - \alpha_4 \right)^{3/2} \right],$$

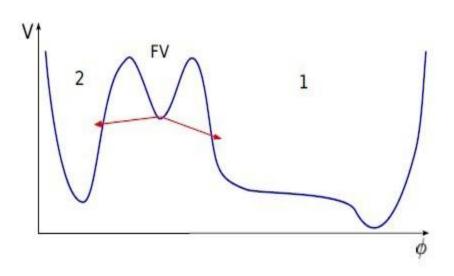
There seems to be some hope to explain the current acceleration, but...

still there exists the Cosmological Constant Problem

A possible resolution: Anthropic Landscape of Vacua

S. Weinberg, Rev. Mod. Phys. 61, 1 (1989)

- The Landscape has several local minima;
- the fields can (and will) tunnel from a metastable minimum to a lower one;
- this process is driven by instanton.



S. Coleman and F. de Luccia, Phys.Rev. D21, 3305, (1980)

→ it is interesting to investigate how the stability of a vacuum is determined in the context of non-linear Massive Gravity

Setup of model

$$S = S_{MG} + S_m,$$

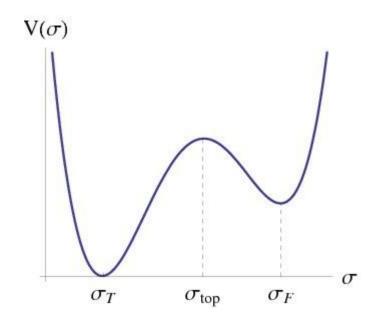
$$S_m \equiv -\int d^4x \sqrt{-g} \left[\frac{1}{2} (\partial \sigma)^2 + V(\sigma) \right],$$

• potential $V(\sigma)$

local minima: σ_F

global minima: σ_T

local max: $\sigma_{\rm top}$



tunneling probability per unit time per unit volume

$$\Gamma/V = Ae^{-B},$$

$$B = S_E[g_{\mu\nu,B},\phi_B] - S_E[g_{\mu\nu,F},\phi_F],$$

$$\uparrow$$

$$\uparrow$$
 bounce solution 'false vacuum' Lowest action

usually, bounce solutions are explored by assuming an O(4) symmetry

» spacetime metric: Euclidean

$$g_{\mu\nu}dx^{\mu}dx^{\nu} = N(\xi)^{2}d\xi^{2} + a(\xi)^{2}\Omega_{ij}dx^{i}dx^{j},$$
$$\Omega_{ij} \equiv \delta_{ij} + \frac{K\delta_{il}\delta_{jm}x^{l}x^{m}}{1 - K\delta_{lm}x^{l}x^{m}}, \quad K > 0$$

Note: the fiducial metric may not respect the symmetry

fiducial metric: deSitter

$$G_{ab}(\phi)d\phi^a d\phi^b \equiv -(d\phi^0)^2 + b(\phi^0)^2 \Omega_{ij} d\phi^i d\phi^j,$$
$$b(\phi^0) \equiv F^{-1} \sqrt{K} \cosh(F\phi^0).$$

fiducial Hubble parameter

 \rightarrow the O(4)-symmetric solutions are obtained by setting

$$\phi^0 = f(\xi), \quad \phi^i = x^i.$$

Inserting these ansatz into the action, we obtain the constraint equation by varying with respect with f

$$(i\dot{a} + Nb_{,f}) \left[\left(3 - \frac{2b}{a} \right) + \alpha_3 \left(1 - \frac{b}{a} \right) \left(3 - \frac{b}{a} \right) + \alpha_4 \left(1 - \frac{b}{a} \right)^2 \right] = 0,$$

$$\dot{a} \equiv \frac{da}{d\xi} \qquad b_{,f} \equiv \frac{db}{df} = \sqrt{K} \sinh(Ff)$$

$$\rightarrow \begin{cases} \text{Branch I} \quad Nb_{,f} = -i\dot{a}, \quad \text{(equivalent to branch II)} \\ \text{Branch II} \quad \left(3 - \frac{2b}{a}\right) + \alpha_3 \left(1 - \frac{b}{a}\right) \left(3 - \frac{b}{a}\right) + \alpha_4 \left(1 - \frac{b}{a}\right)^2 = 0. \end{cases}$$

$$\to b = X_{\pm}a, \qquad X_{\pm} \equiv \frac{1 + 2\alpha_3 + \alpha_4 \pm \sqrt{1 + \alpha_3 + \alpha_3^2 - \alpha_4}}{\alpha_3 + \alpha_4}.$$

Friedmann equation & EOM for tunneling field

$$\begin{cases}
\frac{3}{a^2} \left(\frac{da}{d\tau}\right)^2 - \frac{3K}{a^2} = \frac{1}{2} \left(\frac{d\sigma}{d\tau}\right)^2 - V(\sigma) - \Lambda_{\pm}, \\
\frac{d^2\sigma}{d\tau^2} + 3\left(\frac{da}{d\tau}\right) \frac{d\sigma}{d\tau} - V_{,\sigma}(\sigma) = 0
\end{cases}$$

where $d\tau \equiv Ndt$,

$$\Lambda_{\pm} \equiv -\frac{m_g^2}{(\alpha_3 + \alpha_4)^2} \left[(1 + \alpha_3) \left(2 + \alpha_3 + 2 \alpha_3^2 - 3 \alpha_4 \right) \pm 2 \left(1 + \alpha_3 + \alpha_3^2 - \alpha_4 \right)^{3/2} \right],$$

Hawking-Moss(HM) solution

• HM solution can be found at the local maximum of the potential $\sigma = \sigma_{\rm top}$ under boundary condition $a_{\rm HM}(H_{\rm HM}\tau = \pm \pi/2) = 0$,

$$a_{\rm HM}(\tau) = H_{\rm HM}^{-1} \sqrt{K} \cos \left(H_{\rm HM} \tau\right) ,$$

$$d\tau \equiv N d\xi$$

$$H_{\rm HM} \equiv \sqrt{\frac{\Lambda_{\pm} + V(\sigma_{top})}{3}}$$

• inserting this result into the Euclidean action and evaluate by integrating in the range $H_{\rm HM}\tau = -\pi/2 \longrightarrow \pi/2$, we finally express the HM action

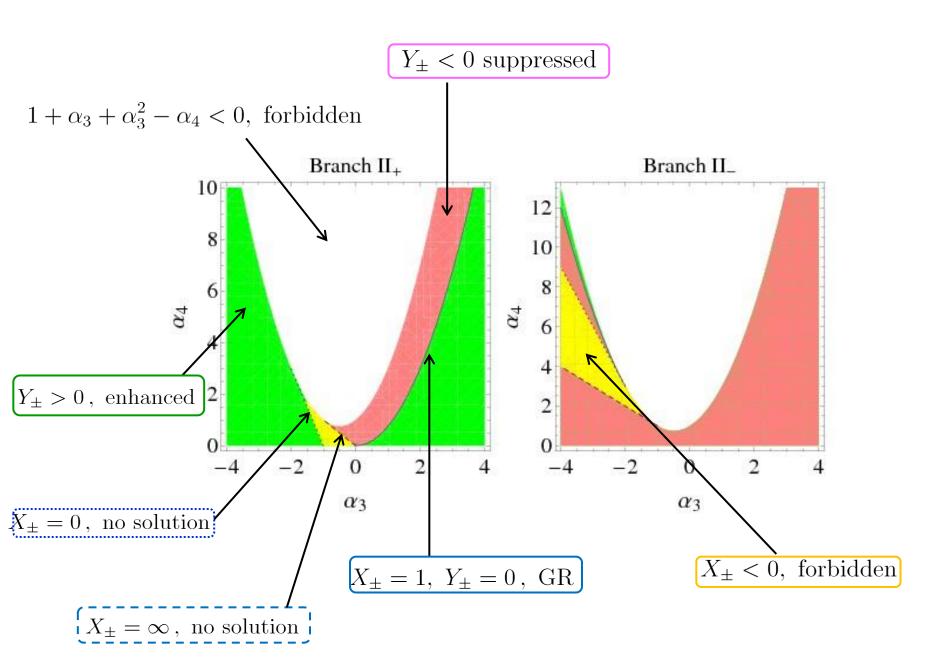
$$Y_{\pm} \equiv 3(1-X_{\pm}) + 3\alpha_3(1-X_{\pm})^2 + \alpha_4(1-X_{\pm})^3$$

$$\int_{E}[a_{\rm HM},\sigma_{\rm top}] = -\frac{8\pi^2}{H_{\rm HM}^2} \left[1 - \frac{Y_{\pm}X_{\pm}}{6\alpha^4} \left(\frac{m_g}{H_{\rm HM}}\right)^2 \left(2 - \sqrt{1-\alpha^2}(2+\alpha^2)\right)\right]$$
 standard HM solution
$$Correction \ due \ to \ the \ mass \ of \ graviton$$

Comparing with GR case, recalling the tunneling probability $\Gamma/V=Ae^{-B}$, we obtains:

$$\Delta B \equiv B^{(MG)} - B^{(GR)} = CY_+, \quad C < 0$$

Tunneling rate is enhanced for $Y_{\pm}>0$, suppressed for $Y_{+}<0$.



Summary and future work

- We constructed a model in which the tunneling field minimally couples to the non-linear massive gravity;
- corrections of HM solution from mass term is found, which implies suppression or enhancement of tunneling rate, depending on the choices of parameters;
- analysis of Colemann-DeLuccia solutions is under work;
- it would be interesting to investigate the case where the tunneling field couples to the non-linear massive gravity non-minimally.

Appendix

$$Y_{\pm} \equiv 3(1 - X_{\pm}) + 3\alpha_3(1 - X_{\pm})^2 + \alpha_4(1 - X_{\pm})^3$$

$$S_{E}[a_{\rm HM}, \sigma_{\rm top}] = \int d^{3}x \sqrt{\Omega} \int_{-\pi/2H_{\rm HM}}^{\pi/2H_{\rm HM}} d\tau \ a_{HM}^{3} \left(2\Lambda_{\pm, \rm eff} - \frac{6K}{a_{\rm HM}^{2}} + m_{g}^{2}Y_{\pm} \sqrt{-\left(\frac{df_{\rm HM}}{d\tau}\right)^{2}} \right)$$

$$\Lambda_{\pm, \rm eff} \equiv \Lambda_{\pm} + V(\sigma_{\rm top})$$

$$b_{\rm HM} = F^{-1}\sqrt{K}\cosh(Ff_{\rm HM}) = X_{\pm}a_{\rm HM} \qquad \qquad \left(\frac{df_{\rm HM}}{d\tau}\right)^2 = \frac{X_{\pm}^2\sin^2(H_{\rm HM}\tau)}{\alpha_{\rm HM}^2\cos^2(H_{\rm HM}\tau) - 1}$$

$$\alpha_{\rm HM} \equiv X_{\pm}\frac{F}{H_{\rm HM}} \in [0, 1]$$

• Note: for the Minkowski fiducial metric, $b_{\rm HM} = \sqrt{K} f_E$, by setting $f_E = -if$ $\frac{df_{E,\rm HM}}{d\tau} = -X_\pm \sin(H_{\rm HM}\tau)$

so we recover the Minkowski one by setting $\alpha_{\rm HM}=0$.