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Introduction

(from WMAP website)

 Accelerating universe

•  Implication of cosmological constant?

•  Observationally, fine !!

•  Cosmological constant problem 

　　　　   121 orders of magnitude differences

Gµ⌫+⇤gµ⌫ = 8⇡GTµ⌫

Can modification of gravity solve 
this puzzle ???



✓  Galileon

L � (@')2 ⇤'

second derivative with respect to space-time

✓  Galileon term contains the second derivative term, but ... 

No higher-order derivative terms in EOM !!

(Nicolis et al. ʼ09)

Galileon theory

coupling between scalar and curvature

⇤ = rµrµ

EOM � (⇤')2 � (rµr⌫')
2 �Rµ⌫rµ'r⌫'



Most general second-order 
scalar-tensor theory (MGST)

Einstein-Hilbert term
L4 � (M2

Pl/2)R

K-essence term L2 � (@�)2, V (�)

Non-minimal derivative coupling
L5 � Gµ⌫rµ�r⌫�

(Germani et al. 2011;
 Gubitosi, Linder 2011)

Cubic galileon term

L3 � (@�)2⇤�

L2 = K(�, X)

L3 = �G3(�, X)⇤�

L4 = G4(�, X)R+G4,X [(⇤�)2 � (rµr⌫�)(rµr⌫�)]

L5 = G5(�, X)Gµ⌫(rµr⌫�)

� 1

6
G5,X


(⇤�)3 � 3(⇤�)(rµr⌫�) (rµr⌫�)

+ 2(rµr↵�)(r↵r��)(r�rµ�)

�

X = �(@�)2/2, GiX = @Gi/@X

✓  Horndeski found the most general Lagrangian whose EOM is second-order 
differential equation for φ and gμν  (also known as Generalized galileon)

Horndeski, Int. J. Theor. Phys. 10,363 (1974) , Deffayet, Gao, Steer (2011) 



Why galileon??

Self-accelerating solution

Free of ghost-instabilities

Vainshtein mechanism 

• Scalar field is effectively weakly coupled to matter in a high 

density region

• Reduce general relativity at small scales

Relation with decoupling limit in massive gravity

(Vainshtein 1972)

(de Rham, Gabadadze, Tolley, 2010)



Cosmological observations

Standard rulers (supernovae + CMB shift parameter) 

• Not powerful tools to constrain model parameters in modified 
gravity theories, but useful tools to determine cosmological 
parameters

Galaxy distribution (SDSS LRG sample)

• The error bar is still large to constrain model parameters

Cross correlation between LSS and ISW

• Excellent tool to constrain modified gravity

• Indicates that the effective gravitational coupling Geff has to be 
smaller than ~1.2 GN, otherwise CCF becomes negative which 
contradicts with observations

RK, Kazuhiro Yamamoto, JCAP 04 (2011) 025
RK, Tsutomu Kobayashi,  Kazuhiro Yamamoto, Physical Review D 85 (2012) 123503



Other signatures ??



 Quadratic action for a tensor mode in the most general scalar-tensor theory

where K, G3, G4, and G5 are arbitrary functions of the scalar field φ and the kinetic term
X ≡ −gµν∇µφ∇νφ/2, Giφ and GiX stands for ∂Gi/∂φ and ∂Gi/∂X, respectively, and Lm is
the matter Lagrangian. We assume that matter is minimally coupled to gravity. Note that
for the case, G4 = M2

Pl/2, the Lagrangian L4 reproduces the Einstein-Hilbert term.
We consider the tensor perturbations in the most general second-order scalar-tensor

theory on a cosmological background, and briefly review the results in derived in [36]. We
briefly review the tensor perturbations in the most general second-order scalar-tensor theory,
derived in [36]. The quadratic action for the tensor perturbations can be written as

S(2)
T =

1

8

∫
dtd3xa3

[
GT ḣ

2
ij −

FT

a2
(#∇hij)

2

]
, (2.3)

where

FT ≡ 2
[
G4 −X

(
φ̈G5X +G5φ

)]
, (2.4)

GT ≡ 2
[
G4 − 2XG4X −X

(
Hφ̇G5X −G5φ

)]
. (2.5)

Here an overdot denotes differentiation with respect to t, and H = ȧ/a is the hubble param-
eter. We find the propagation speed of the tensor perturbations,

c2T ≡ FT

GT
. (2.6)

When G4 = G4(φ) and G5 = 0, the propagation speed of gravitational waves is equal to the
speed of light. On the other hand, the propagation speed of gravitational waves depends
on the cosmological background in the presence of G5 or G4 being dependent on X. If
the propagation speed of gravitational waves is less than the speed of light, it is tightly
constrained from gravitational Cherenkov radiation.

3 Gravitational Cherenkov radiation in an expanding universe

In this section, we derive the gravitational Cherenkov radiation in a cosmological background.
For simplicity, we consider a complex scalar field with the action

Sm =

∫
d4x

√
−g
[
−gµν∂µΨ

∗∂νΨ−m2Ψ∗Ψ− ξRΨ∗Ψ
]
. (3.1)

Here we assume the conformal coupling with spacetime curvature ξ = 1/6, for simplicity, but
this term can be neglected as long as we focus on the subhorizon scales, p/a,m % H, where
p is the comoving momentum. The free part of Ψ can be quantized as

Ψ̂(η,x) =
1

a

∫
d3p

(2π)3/2

[
b̂pψp(η)e

ip·x + ĉ†pψ
∗
p(η)e

−ip·x
]
, (3.2)

where η is the conformal time, b̂p and ĉ†p are the annihilation and creation operators of the

particle and anti-particle, respectively, which satisfy the commutation relations [b̂p, b̂
†
p′ ] =

δ(p− p′), [ĉp, ĉ
†
p′ ] = δ(p− p′), and the mode function obeys

(
d2

dη2
+ p2 +m2a2

)
ψp(η) = 0. (3.3)
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Sound speed of  
graviton in MGST

FT ⌘ 2
h
G4�X

⇣
�̈G5X +G5�

⌘i

GT ⌘ 2
h
G4�2XG4X �X

⇣
H�̇G5X �G5�

⌘i

Kobayashi, Yamaguchi, Yokoyama, Prog. Theor. Phys. 126, 511 (2011),

 Sound speed of graviton

Sound speed of graviton could be different from speed of light !!!



Gravitational 
Cherenkov radiation

particle

graviton

particle

Moore and Nelson (2001)

If the sound speed of graviton is smaller than the speed of light, particle 
should emit graviton through the similar process to Cherenkov radiation

Highest energy cosmic ray (p ~ 3×1011 GeV) can provide us the lower bound 
on the sound speed of graviton



Gravitational 
Cherenkov radiation
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The WKB approximate solution is given by (e.g., [45])

ψp(η) =
1√
2Ωp

exp

[
−i

∫ η

ηin

Ωp(η
′)dη′

]
(3.4)

with Ωp(η) =
√

p2 +m2a2. The WKB approximation is valid for

Ω2
p "

∣∣∣∣
1

Ωp

d2Ωp

dη2
− 3

2

1

Ω2
p

(
dΩp

dη

)2∣∣∣∣
2

, (3.5)

which can be satisfied as long as p/a,m " H.
On the other hand, the action of the graviton is given by eq. (2.3), then, we have the

quantized graviton field

ĥµν =
1

a

√
2

GT

∑

λ

∫
d3k

(2π)3/2

[
ε(λ)µν âkhk(η)e

ik·x + ε(λ)µν â
†
kh

∗
k(η)e

−ik·x
]
, (3.6)

where ε(λ)µν is the polarization tensor, â†k and âk are the creation and annihilation operators,

which satisfy the commutation relation [âk, â
†
k′ ] = δ(k− k′), and the mode function satisfies

(
d2

dη2
+ c2sk

2 − a′′

a

)
hk(η) = 0. (3.7)

For the case cs ∼ O(1) and csk/a " H, we may write

hk(η) =
1√
2ωk

exp

[
−i

∫ η

ηin

ωk(η
′)dη′

]
, (3.8)

where we defined ωk = csk, and the approximate solution is valid as long as csk/a " H. The
interaction part of the action (3.1) is given by

SI = −
∫

dtd3xahij∂iΨ∂jΨ
∗

= −
∫

dηd3xhij∂iψ∂jψ
∗, (3.9)

where we defined ψ = aΨ, and the interaction Hamiltonian is

HI = a

∫
d3xhij∂iΨ∂jΨ

∗. (3.10)

In order to evaluate the gravitational Cherenkov radiation, we adopt the method de-
veloped in [46, 47]. Based on the in-in formalism [48], the lowest order contribution is given
by

〈Q(t)〉 = i2
∫ t

tin

dt2

∫ t2

tin

dt1 〈[HI(t1), [HI(t2), Q]]〉 . (3.11)

We consider the expectation value of the number operator and the initial state with the one
particle state with the initial momentum, i.e., b̂†pin |0〉. Then the lowest-order contribution of

– 4 –

[b̂p, b̂
†
p0 ] = �(p� p0)

[ĉp, ĉ
†
p0 ] = �(p� p0)

✓
d2

d⌘2
+ p2 +m2a2

◆
 p(⌘) = 0

✓
d2

d⌘2
+ c2T k

2 � a00

a

◆
hk(⌘) = 0

Consider the complex scalar in a FRW background

Quantize the complex scalar and tensor field as

Mode functions satisfy



Gravitational 
Cherenkov radiation

Figure 1. Feynman diagram for the process

the process so that one graviton with the momentum k is emitted from the massive particle
with the initial momentum pin, as shown in fig. 1, is written as [49]

〈
â†(λ)k â(λ)k

〉
= 2!

∫ t

tin

dt2

∫ t2

tin

dt1
〈
HI(t1)â

†(λ)
k â(λ)k HI(t2)

〉
. (3.12)

Then, the total radiation energy from the scalar particle can be estimated as E =
∑

λ

∑
k(ωk/a)〈

â†(λ)k â(λ)k

〉
, which leads to

E =
∑

λ

∫
d3k

(2π)3
ωk

a

∣∣∣∣
∫ η

ηin

dη1
1

a(η1)

√
2

GT
hk(η1)ψpf (η1)ψ

∗
pin

(η1)εijp
i
inp

j
f

∣∣∣∣
2

, (3.13)

where pf + k = pin (pif + ki = piin). With the use of the relation
∑

λ

∣∣εijpiinp
j
f

∣∣2 = p4in sin
4 θ,

we have

E =

∫
d3k

(2π)3
ωk

a
p4in sin

4 θ

∣∣∣∣
∫ η

ηin

dη1
1

a(η1)

√
2

GT
hk(η1)ψpf (η1)ψ

∗
pin

(η1)

∣∣∣∣
2

.

(3.14)

We are now interested in the subhorizon scales, k/a, p/a, m, csk/a " H, and the situation
so that the scale factor a is constant, then we can approximate as

∫ η

ηin

dη1
1

a(η1)

√
2

GT
hk(η1)ψpf (η1)ψ

∗
pin

(η1)

# 1

a

√
2

GT

1√
2ωk

1√
2Ωpin

1√
2Ωpf

∫ η

ηin

dη1 exp [i(Ωin − Ωf − ωk)(η1 − ηini)] . (3.15)

Then the total radiation energy eq. (3.14) reduces to

E # 1

4GTa3

∫
d3k

(2π)3
p4in sin

4 θ

ΩfΩin

2πT

a
δ(Ωin − Ωf − ωk), (3.16)

Here we assumed the long time duration of the integration,
∣∣∣∣
∫ η

ηin

dη1 exp [i(Ωin − Ωf − ωk)(η1 − ηini)]

∣∣∣∣
2

# 2πT

a
δ(Ωin − Ωf − ωk), (3.17)
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E =
X

�

X

k

(!k/a)
⌦
â†(�)k â(�)k

↵

HI = a

Z
d3xhij@i @j 

⇤

where

The total radiation energy from the complex scalar field

dE

dt
' GN p4in

a4
4(1� cT )2

3(1 + cT )2

Graviton emission rate (using sub-horizon approximation)

t ⇠ a4

GN

(1 + cT )2

4(1� cT )2
1

p3

A particle with momentum p cannot possibly have been traveling for longer than 



Ehighest ⇠ 1011GeV

c t ⇠ 10 kpc

• Energy

• Distance

1� cT <⇠ 2⇥ 10�15

Time scale that cosmic 
ray turn into radiation 

energy of graviton

Time scale that 
cosmic ray travels 
from origin to us

＞

 Observations from cosmic rays tells

 The highest energy cosmic ray

 Constraint on the sound speed of graviton

Gravitational 
Cherenkov radiation



Toy Model 1

S =

Z
d

4
x

p
�g


M

2
Pl

2
R+X +

�

M

2
Pl

G

µ⌫rµ�rµ�+ Lm[gµ⌫ , ]

�

K = X

G3 = 0

G4 = M2
Pl/2

G5 = ���/M2
Pl

Inconsistent with the constraint from the gravitational Cherenkov radiation...

� 1

18

M2
Pl

H2
0

< � < � 1

30

M2
Pl

H2
0

! is always negative

 Sound speed of graviton

 Gubitosi and Linder model (Gubitosi and Linder 2011)

 Condition for existence of self-accelerating solution and avoiding 
the ghost-instability

c2T =
M2

Pl + 2��̇2/M2
Pl

M2
Pl � 2��̇2/M2

Pl

< 1



Toy Model 2

The condition for avoiding ghosts of the tensor perturbations, GT > 0, is δ > Ωφ(Ωφ − 3),
which is automatically satisfied, while the condition for avoiding instability c2T ≥ 0 is

δ ≥
Ωφ

Ωφ + 3
. (4.6)

Therefore, δ > 0 is required for avoiding ghost-instability. Thus the theoretically allowed
parameter range is

0 < δ <
2

5
, (4.7)

which is equivalent with

− 1

18
< C(z = 0) < − 1

30
. (4.8)

The propagation speed of gravitational waves in terms of Ωφ is rephrased as

c2T =
(3 + Ωφ)δ − Ωφ

(3− Ωφ)δ + Ωφ
. (4.9)

The constraints from gravitational Cherenkov radiation cT > 1 − ε, where ε = 2 × 10−15,
reads δ > 1−O(ε) from eq. (4.9), which contradicts with the condition (4.7). Equivalently,
from eqs. (4.3) and (4.8), λ is always negative, therefore, the propagation speed of gravita-
tional waves is always smaller than unity from eq. (4.5). Thus this purely kinetic coupled
gravity is inconsistent with the constraint from the gravitational Cherenkov radiation for any
theoretically allowed parameter λ.

5 Extended galileon model

In this section, we consider the model proposed by De Felice and Tsujikawa [44], which is an
extension of the covariant galileon model [52]. In this model, the arbitrary functions has the
following form,

K = −c2M
4(1−p2)
2 Xp2 ,

G3 = c3M
1−4p3
3 Xp3 ,

G4 =
1

2
M2

pl − c4M
2−4p4
4 Xp4 ,

G5 = 3c5M
−(1+4p5)
5 Xp5 , (5.1)

where ci and pi are the model parameters and Mi are constants with dimensions of mass.
We impose the conditions that the tracker solution is characterized by Hφ̇2q = const and
the energy density of the scalar field is proportional to φ̇2p. These conditions enable us to
reduce the model parameters, which is given by p2 = p, p3 = p + (2q − 1)/2, p4 = p + 2q,
and p5 = p+ (6q− 1)/2 1. Note that the covariant Galileon model corresponds to p = 1 and
q = 1/2.

1Kimura and Yamamoto considered the case : p = 1, q = n− 1/2, c4 = 0, and c5 = 0 [53].
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Summary

• In the most general scalar-tensor theory, sound speed of 
graviton could be different from speed of light

• The constraints from gravitational Cherenkov radiation 
would be a powerful probe.

• Gravitational Cherenkov radiation could be a criteria for the 
construction of modification of gravity



Gravitational Cherenkov 
radiation for massive graviton

3

where γij ≡ ΩikΩjlγkl, " ≡ DiDi is the Laplacian operator associated with Ωij , F (t) and cn(t) (n = 0, 1, · · · ) are
general functions of the time coordinate t. Note that F (t) must be positive definite in order to avoid appearance
of ghost and strong coupling. We can then set F (t) = 1 by a field redefinition, to be more precise, by a conformal
transformation. Finally, in order to describe low energy phenomena such as cosmological evolution of gravitational
waves at late time, we truncate the series expansion (the sum over n) at the second order spatial derivatives and
obtain

I(2)tensor =
M2

Pl

8

∫
dtd3xNa3

√
Ω

[
1

N2
γ̇ij γ̇ij +

c2g(t)

a2
γij ("− 2K)γij −M2

GW (t)γijγij

]
, (5)

where we have set F = 1 by a field redefinition (or a conformal transformation) and we have defined

c2g(t) ≡ c1(t), M2
GW (t) ≡ −c0(t)−

2Kc1(t)

a2
. (6)

Note that physical meaning of cg and MGW are the sound speed and effective mass of gravitational waves.
Taking advantages of the background symmetry, it is convenient to expand γij as

γij =
∑

λ

∫
k2dk γk,λY

λ
ij

(
"k, "x

)
, (7)

where k2 ≡ Ωij
"ki"kj , λ denotes the helicity state and Y λ

ij is the tensor harmonics satisfying

(
"+ k2

)
Y λ
ij = 0, DiY λ

ij = 0, ΩijY λ
ij = 0,

∫
d3x

√
Ω ΩijΩklY λ

ik

(
"k, "x

)
Y λ′

jl

(
"k′, "x

)
= 32π2δλλ′δ3

(
"k + "k′

)
. (8)

The equation of motion for γk,λ is then

γ̄′′
k +

(
c2gk

2 + a2M2
GW −

a′′

a
+ 2Kc2g

)
γ̄k = 0, γ̄k ≡ aγk, (9)

where the prime (′) denotes derivative with respect to the conformal time η defined by dη ≡ Ndt/a. Since the equation
of motion is identical for both polarizations, we omit the index λ hereafter.

III. AN ATTEMPT TOWARD NONLINEAR COMPLETION

The nonlinear theory of massive gravity recently proposed by Refs. [3, 4] eliminates the renowned BD ghost by
construction and thus can be considered as a nonlinear completion of the Fierz-Pauli theory, which is the simplest
and the oldest among all linear massive gravity theories. Having this in mind, we consider it quite possible that the
phenomenological model described in the previous section might also find its nonlinear completions in the future.
In this section we discuss an attempt towards such a nonlinear completion. In particular, we shall derive the model

with cg = 1 precisely, based on a non-trivial background in the nonlinear theory of massive gravity. Unfortunately,
this construction is purely classical and fails at the quantum level [31].1 Nonetheless, at the very least it shows that
the structure of the model considered in the present paper, with cg = 1, is not forbidden by symmetry. Readers who
are interested only in purely phenomenological aspects can safely skip this section.
The covariant action of the nonlinear massive gravity is constructed out of a 4-dimensional metric gµν and four

scalar fields ϕa (a = 0, 1, 2, 3) called Stückelberg fields. The Stückelberg fields enter the action only through the tensor
fµν defined as

fµν = f̄ab(ϕ
c)∂µϕ

a∂νϕ
b, (10)

where f̄ab(ϕc) is a non-degenerate, second-rank symmetric tensor in the field space. The spacetime metric gµν and
the tensor fµν are often called physical metric and fiducial metric, respectively.

1 Adopting a different approach, Ref. [32] achieved a similar conclusion.
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I. MASSIVE GRAVITY

We consider the equation of motion

γ′′k +

(
c2gk

2 + a2M2
GW − a′′

a
+ 2Kc2g

)
γk = 0 (1)

The dispersion relation

ω2
k = c2gk

2 + a2M2
GW (2)

II. GRAVITATIONAL CHERENKOV RADIATION IN AN EXPANDING UNIVERSE

In this section, we derive the gravitational Cherenkov radiation in a cosmological background. For simplicity, we
consider a real scalar field with the action

Sm =

∫
d4x

√
−g

[
−1

2
gµν∂µΨ∂νΨ− 1

2
m2Ψ2 − 1

2
ξRΨ2

]
.

(3)

Here we assume the conformal coupling with spacetime curvature ξ = 1/6, for simplicity, but this term can be
neglected as long as we focus on the subhorizon scales, p/a,m # H, where p is the comoving momentum. The free
part of Ψ can be quantized as

Ψ̂(η,x) =
1

a

∫
d3p

(2π)3/2

[
b̂pψp(η)e

ip·x + b̂†pψ
∗
p(η)e

−ip·x
]
,

(4)

where η is the conformal time, b̂†p and b̂p are the creation and annihilation operators, which satisfy the commutation

relation [b̂p, b̂
†
p′ ] = δ(p− p′), and the mode function obeys

(
d2

dη2
+ p2 +m2a2

)
ψp(η) = 0. (5)

The WKB approximate solution is given by (e.g., [? ])

ψp(η) =
1√
2Ωp

exp

[
−i

∫ η

ηin

Ωp(η
′)dη′

]
(6)

with Ωp(η) =
√
p2 +m2a2. The WKB approximation is valid for

Ω2
p #

∣∣∣∣
1

Ωp

d2Ωp

dη2
− 3

2

1

Ω2
p

(
dΩp

dη

)2∣∣∣∣
2

, (7)
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For cg=c, there is no gravitational Cherenkov radiation even if m≠0

Currently, checking the case cg≠c and m≠0...
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