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Abstract

We discuss the inspiral of a small body in a background Kerr spacetime. In the adia-
batic regime, the radiation reaction is solely characterized by the averaged rate of the
change of the constants of motion, the energy E, the azimuthal angular momentum
L and the Carter constant Q. Despite the lack of the global conservation law for the
Carter constant, it has been shown that its long time averaged rate of change can
be simply computed via “global conservation law like” formula when there exists a
simultaneous turning point of the radial and polar oscillations. However, an inspi-
ralling orbit may cross a resonance point, where the frequencies of the radial and polar
orbital oscillations are in a rational ratio. At the resonant point, one cannot find a
simultaneous turning point in general, thus a direct computation of the self-forces,
quite challenging especially in the Kerr background, seems to be necessary. Contrary
to this expectation, we here show that we can still compute the averaged rate of
change of the Carter constant in a relatively simple manner even at the resonance
point.

1 Introduction

A supermassive black hole accompanied by a compact object is one of the potential sources of the low
frequency gravitational waves. This system can be considered as a particle with mass µ moving along a
bound orbit on a much larger Kerr black hole with the mass M(≫ µ) and the spin parameter a. Then,
the dominant part of the long time orbital evolution due to the radiation reaction of the gravitational
wave emission is dictated by the long time averaged rates of the change of three constants of motion: the
energy E, the azimuthal angular momentum L and the Carter constant Q as long as the characteristic
time scale of the secular orbital evolution due to the radiation reaction is sufficiently longer than the
orbital period. This method is called the adiabatic approximation [1, 2].

The averaged rates of change of the energy and the azimuthal angular momentum of the particle
can be balanced with the ones carried by the gravitational waves due to their global conservation laws.
Although we do not have any balance argument for the Carter constant, based on Mino’s work [1], it
has shown that the averaged rate of change of the Carter constant can be also computed by a practically
simple formula [2, 3]. However, the derivation of above mentioned formula implicitly assumes that there
exists a simultaneous turning point of the radial and polar oscillations. The problem is that we cannot
find such a turning point for a inspiral that crosses a resonant point, where the inspiral’s radial and polar
orbital frequencies, Ωr and Ωθ, takes Ωr/Ωθ = jr/jθ with coprime integers, jr and jθ.

The purpose of this article is overviewing our claim that we can still easily compute the adiabatic
evolution of the Carter constant in the resonance case, together with the scalar toy model: a point scalar
particle with mass µ0 and charge q coupled to its own scalar field, and moving on the resonant bounded
geodesic around the Kerr black hole. Further details are presented in our preparing manuscript [5]. In
this paper, we use geometrical units G = c = 1 and take the sign convention of the metric is (−,+,+,+).
For saving the space of the article, the basic tools required for the adiabatic evolution of the scalar toy
model, such as the solution of geodesic equation and the mode-decomposed retarded solution of the scalar
field, are borrowed from Drasco et al.[6] without derivation.
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2 A bounded resonant geodesic in Kerr spacetime

We label the geodesic motion of a scalar particle with the bare rest mass µ = 1 and a scalar charge q
as z(λ) := (t(λ), r(λ), θ(λ), ϕ(λ)) with the “Mino time” λ, which is related to the proper time τ as
dλ := dτ/Σ with Σ := r2+a2 cos2 θ. In terms of the Mino time, the r and θ oscillations are independently
periodic for bound orbits:

r(λ) = r(λ+ nΛr), θ(λ) = θ(λ+ kΛθ), (1)

where n and k are integers, and Λr and Λθ are the periods with respect to the Mino time λ. The precise
meaning of the resonance is that the orbital frequencies Υr,θ := 2π/Λr,θ with respect to the Mino time
λ, or the frequency Ωr,θ = Υr,θ/Υt with respect to t are related to each other as

Υr

jr
=

Υθ

jθ
=: Υ , (2)

where jr and jθ are coprime integers. In the resonance case, there is always a difference between the
times reaching the minima of r and θ oscillations. We call this difference “offset phase” and denote it as
∆λ ,and choose ∆λ such that |∆λ| ≤ Λ′/2, where Λ′ = (2π/Υ)/(jr + jθ).

The motion in the t and ϕ directions is also decoupled into r- and θ-dependent parts. Indeed, we have

t(λ) = Υtλ+∆tr(λ−∆λ) + ∆tθ(λ), ϕ(λ) = Υϕλ+∆ϕr(λ−∆λ) + ∆ϕθ(λ), (3)

where Υt and Υϕ are the averaged orbital frequency, and ∆tr and ∆ϕr are the oscillating function with
the period Λr. The meaning of the functions ∆tθ and ∆ϕθ can be understood in the same manner.

For detailed derivations, see Draso et al.[6].

3 Adiabatic evolution of the Carter constant with resonance

Due to the lack of the global conservation law for the Carter constant, we go back to the definition of the
Carter constant, and start from the bare formula of its long time averaged rate of the change, which is
written in terms of the scalar self-force acting on the particle. The Carter constant in the Kerr spacetime
is defined as (e.g.. see Ref. [3])

Q :=

(
L

sin θ
− a sin θE

)2

+ a2 cos2 θ +Σ2(uθ)2, (4)

where uα := dzα/dτ , and E and L are the conserved energy and the azimuthal angular momentum of the
particle, respectively. With the aid of the geodesic equations, the expression of the long time averaged
value of the Mino-time derivative of the Carter constants takes⟨

dQ

dλ

⟩
λ

= −2q

⟨{(
Vtr(r)∂t + Vϕr(r)∂ϕ +

dr(λ)

dλ
∂r

)[
Σ(x)Φ(R)(x)

]}
x=z(λ)

⟩
λ

, (5)

where Vtr(r) and Vϕr(r) are the r-dependent potentials of the t and ϕ components of the geodesic equations

[6]. In Eq. (5), the symbol ⟨. . . ⟩ denotes the λ average: ⟨F (λ)⟩λ := limT→+∞(1/(2T ))
∫ +T

−T
dλ′F (λ′) for

a function F (λ). The field Φ(R)(x) is the R-part of the retarded scalar field, which is regular even at
the particle’s location [7]. With the aid of the “radiative (anti-symmetric)” field defined by the half-
retarded minus half-advanced fields, and the “symmetric” field also defined by the half-retarded plus
half-advanced field, we have Φ(R)(x) := Φ(rad)(x) +

{
Φ(sym)(x)− Φ(S)(x)

}
, where Φ(S)(x) is the S-part

of the retarded field, which is the symmetric for the argument of the Green function, satisfies the same
inhomogeneous Klein-Gordon equation as retarded solution, and shares the same singular structure as
the one of retarded/advanced field. To ensure the regularity of Φ(R)(x), the subtraction of Φ(S)(x) is
essential.

Noting that either radiative, symmetric and S-part field, which we put the symbol Φ(♯) to schematically
denote them, is defined through the Green function as Φ(♯) := −q

∫
dλΣ[z(λ)]G(♯)[x, z(λ)], Eq. (5) can
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be rewritten with these Green functions. After integral by parts of Eq. (5) and rather involved algebra,
we arrive at expression for the radiative part:⟨

dQ

dλ

⟩(rad)

λ

= 2q2
∫ +∞

−∞
dλ′ Σ[z(λ′)]

⟨[
Σ(x) (⟨Vtr⟩∂t − ⟨Vϕr⟩∂ϕ)G(rad)(x, z(λ′))

]
x=z(λ)

⟩
λ

−2q2
∫ +∞

−∞
dλ′

[
Σ(x′)

d

d(∆λ)

⟨
Σ[z(λ)]G(rad)(z(λ), x′)

⟩
λ

]
x′=z(λ′)

. (6)

Note that z(λ) implicitly depends on the offset phase ∆λ.
The symmetric and S-part contribution to ⟨dQ/dt⟩(♯) is more tricky since the each ofG(sym)[z(λ), z(λ′)]

and GS [z(λ), z(λ′)] diverges in the coincidence limit z(λ) → z(λ′), while their difference is regular in this
limit. The problem here is that we can just compute symmetric and S-part field separately since the
S-part Green function is only defined near the particle location[7]. To remedy this situation, we here
introduce the point splitting regularization by displacing the orbits z(λ) and z(λ′) as z(λ) → z+(λ) :=
z(λ) + (ϵ/2)ξ, and z(λ′) → z−(λ

′) := z(λ′) − (ϵ/2)ξ with a small parameter ϵ ≪ 1, and the Killing field
ξ := cos ζ ξ(t)µ + (Ωϕ cos ζ − Ωsin ζ) ξ(ϕ)µ as well as the Killing vectors associated with the stationarity
and axisymmetry of the Kerr spacetime: ξ(t)µ and ξ(ϕ)µ. Here Ωϕ and Ω are the orbital frequency with
respect to t, not to the Mino-time, and we introduce the parameter ξ to specify the Killing field.

Taking care of this point splitting regularization, the symmetric contribution to ⟨dQ/dt⟩, after sub-
tracting the S-part contribution and making it regularized, can be written as⟨

dQ

dλ

⟩(sym−S)

λ

= − lim
ϵ→0

q2
d

d(∆λ)

[
Ψ(sym)(∆λ, ϵ)−Ψ(S)(∆λ, ϵ)

]
. (7)

where we introduce the symmetric and S-part potential Ψ(sym)/(S)(∆λ, ϵ) defined by

Ψ(sym)/(S)(∆λ, ϵ) :=

∫ +∞

−∞
dλ′Σ[z−(λ

′)]
⟨
Σ[z+(λ)]G

(sym)/S[z+(λ), z−(λ
′)]
⟩
λ
. (8)

4 Simplified formula for the regularized symmetric part

The expressions Eqs. (6) and (7) are rewritten as more practical expressions if we take care of that the
variables of the scalar Klein-Gordon equation is separable in the Kerr spacetime. In fact, its homogeneous
solution, namely mode functions is written by π♭

ωℓm(t, r, θ, ϕ) := (2/
√
r2 + a2)e−iωteimϕθωℓm(θ)u♭ωℓm(r∗)

wherem is the integer, r∗ is the tortoise coordinate defined by dr∗ := ((r2 + a2)/(r2 − 2Mr + a2))dr, and
θωℓm(θ)eimϕ := Sωℓm(θ, ϕ) is the spheroidal harmonics normalized as

∫
dθdϕ sin θSωℓm(θ, ϕ)∗Sωℓ′m′(θ, ϕ) =

δℓℓ′δmm′ .. The symbol ♭ represents one of the four distinct boundary conditions: “up”, “down”, “in” and
“out”. The corresponding radial functions u♭ωℓm(r∗) are respectively defined in e.g. Ref.[6]. The mode
functions enable us to write down the retarded Green function as the factorized form:

G(ret)(x, x′) =
1

16πi

∫ +∞

−∞
dω

+∞∑
ℓ=0

ℓ∑
m=−ℓ

ω

|ω|
1

αωℓmβωℓm

×
[
πup
ωℓm(x)πout ∗

ωℓm (x′)H(r − r′) + πin
ωℓm(x)πdown ∗

ωℓm (x′)H(r′ − r)
]

(9)

with the Heaviside step function H(x) :=
∫ x

−∞ δ(y)dy. Thinking of the definition of the radiative and
the symmetric field, at least, the Green functions associated with these two field are also written in
the factorized form with the relation given by G(rad)(x, x′) := (1/2)[G(ret)(x, x′) − G(ret)(x′, x)] and
G(sym)(x, x′) := (1/2)[G(ret)(x, x′) + G(ret)(x′, x)] with G(ret)(x, x′) = G(adv)(x′, x). Their explicit forms
will be shown our manuscript [5].

The simplified formula is essentially derived by substituting the radiative and the symmetric Green

function in the factorized form into Eqs. (6) and (7). Considering ⟨dQ/dλ⟩(rad)λ has already computed
by both Flanagan et.al. [8] and us [5], we bravely skip to show its explicit form here. See above two
references for technical issues and its final form.
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Compared to ⟨dQ/dλ⟩(rad)λ , the simplification of ⟨dQ/dλ⟩(sym)
λ and ⟨dQ/dλ⟩(S)

λ is much involved. The
main obstacle is that the S-part Green function does not admit the mode decomposition in terms of the
spheroidal harmonics, while we can easily decompose the symmetric Green function with the aid of Eq. (9).
Here, the key observation here is what we need is the mode decomposition of the potentials defined in
Eq. (8), rater than that of the Green functions themselves. We note that the bound geodesic allows to
discretized the frequency ω as ωmN := mΩϕ +NΩ with the integer N . With the aid of this information
and the retarded Green fucntion in mode decomposed form given in Eq. (9), it is straightforward to
obtain the regularized symmetric potential in the (N,m)-decomposed form:

Ψ(sym)(∆λ; ϵ) =
∑
Nm

ei(ϵ1N+ϵ2m)ΩΨ
(sym)
Nm (∆λ), (10)

where ϵ1 = ϵ cos ζ and ϵ2 = ϵ sin ζ. remarkably, Eq. (10) is nothing but a two-dimensional Fourier series
expansion of Ψ(sym)(∆λ; ϵ). In other words, the (N,m)-mode decomposition is simply achieved via its
inverse Fourier transformation. This is clearly good news for the S-part potential since its local expansion
near the particle can be computed as

Ψ(S)(∆λ; ϵ) = −ψ(ζ)
ϵ

+O(ϵ), (11)

with a ζ-dependent function. Thus, the (N,m)-mode decomposition of Eq. (11) is just derived as

Ψ
(S)
Nm(∆λ) =

Ω2

4π2

∫ π
Ω

− π
Ω

dϵ1

∫ π
Ω

− π
Ω

dϵ2e
−i(ϵ1N+ϵ2m)ΩΨ(S)(∆λ; ϵ) (12)

All in all, the expression given in Eq. (7) can be computed as by mode-by-mode subtraction:⟨
dQ

dt

⟩(sym)

t

= − q2

Υt

∑
Nm

ei(ϵ1N+ϵ2m)Ω

[
d

d(∆λ)

{
Ψ

(sym)
Nm (∆λ)−Ψ

(S)
Nm(∆λ)

}]
. (13)

The merit of Eq. (13) is that both (N,m)-modes of the symmetric and S-part potentials are easily handled
in the numerical implementation without bothering the divergence. In addition, the S-part has already
subtracted at the level of mode decomposed form, we do not see any divergence even after summing up
with respect to the N and m modes of the right hand side of Eq. (13). Again, further technical details
will be explained our manuscript [5].
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