

Shin'ichirou Yoshida, JGRG 22(2012)111408

"Non-axisymmetric oscillations of rotating relativistic stars by

conformally flat approximation"

RESCEU SYMPOSIUM ON

GENERAL RELATIVITY AND GRAVITATION

JGRG 22

November 12-16 2012

Koshiba Hall, The University of Tokyo, Hongo, Tokyo, Japan

Non-axisymmetric oscillations of rotating relativistic stars by conformally flat approximation

Shin'ichirou Yoshida (The University of Tokyo)

Studies of oscillations of rapidly rotating relativistic stars

astrophysical interests

as sources of gravitational wave $\nu \sim \text{several} \cdot (10^2 - 10^3) \text{Hz}$

ground-based laser-interferometers resonant detectors

stability of stars

determining maximum masses/rotational period of NS

Aim of the studies:

Compute characteristic(eigen-) frequencies of "realistic" NS models.

Determine the stability boundaries of a parameter space of rotating stars.

Preceding studies of oscillations of rotating stars in GR

via traditional eigenvalue problem

Kojima (1992,1997) slow-rotation Yoshida & Kojima (1997) slow-rotation

Cutler & Lindblom (1992) post-Newtonian

Yoshida & Eriguchi (1997,1999) Cowling; f-modes Yoshida & Eriguchi (2001) Cowling; axisymmetric modes Yoshida et al. (2002,2005) Cowling; f-modes

Lockitch et al. (2001) slow-rotation, relativistic inertial modes

Ruoff & Kokkotas (2001,2002) slow-rotation, relativistic rmodes

Ferrari et al. (2004) Cowling; rotating proto-NS Passamonti et al. (2006) slow-rotation Ferrari et al. (2007)

via direct hydrodynamical simulations

Font et al. (2001) Cowling; axisymmetric oscillations Dimmelmeier et al. (2006) spatially conformal-flat; axisymmetric oscillations

Saijo et al. (2001) post-Newtonian Saijo (2005) spatially conformal-flat

Shibata & Sekiguchi (2003) full GR; axisymmetric oscillations Shibata & Karino (2004) post-Newtonian; bar-mode instability Shibata & Sekiguchi (2005) full GR; dynamical instability

Stavridis et al. (2007) slow-rotation(differential) Kastaun et al. (2010) Cowling Krueger et al. (2010) Cowling Gaertig & Kokkotas (2009,2011) Cowling (also g-modes)

Baiotti et al. (2007) full GR; bar-mode instability Manca et al. (2007) full GR; dynamical instability Takami et al. (2011) full GR; axisymmetric instability

"Cowling"=Cowling approximation where metric perturbation is neglected

* non-linear hydrodynamic simulation

* linear hydrodynamic simulation

Full GR treatment is rather expensive!

* eigenvalue problem - no formulation exists except for slowly rotating cases! (messy equations; how do we impose boundary conditions?)

* direct numerical simulations - numerically expensive identification & extraction of eigenmodes?

For a "fluid mode", its gravitational damping time is several orders of magnitude longer than the period \longrightarrow We may neglect the gravitational radiation effect.

But, neglecting all the gravitational perturbation (Cowling approximation) is not satisfactory, especially for the low-order modes.

We want something better than Cowling, but easier to handle than "full GR".

Conformally flat approximation!!

General relativistic hydrodynamics with spatially conformally-flat approximation

Isenberg (1978) ;Wilson et al. (1996) : Solving system of elliptic eqs. for metrics "Isenberg-Wilson-Mathews theory"

Applications

Wilson et al.(1996) - binary NS quasi-equilibrium

Glanclement et al. (2002) - binary BH quasi-equilibrium

Oechslin et al. (2002;2004) - NS merger

Faber et al. (2004) - NS merger

Dimmelmeier et al.(2002) - Core-collapse SN

Saijo (2005) - bar-instability in core collapse

Dimmelmeier et al.(2006) - Non-linear oscillations of NS

Formulation

assumptions

- + a background star stationary, axisymmetric, isentropic
- + barotropic EOS no buoyancy (no g-modes)
- + linear perturbation
- + spatially conformally flat approximation (CFA) of gravity
 - both equilibrium & perturbed state

[CFA]

$$ds^{2} = -\alpha^{2}dt^{2} + \psi^{4}f_{ij}(dx^{i} + \beta^{i}dt)(dx^{j} + \beta^{j}dt); \quad f_{ij}: \text{ flat metric}$$

"(3+1)-" form of Einstein's equation in CFA:

Hamiltonian & Momentum constraint, "evolution" of Kij (K=0)

$$\begin{split} \hat{\nabla}^{i}\hat{\nabla}_{i}\psi &= -2\pi\psi^{5}\left(\rho_{H} + \frac{1}{64\pi\alpha^{2}}\hat{\Lambda}_{ij}\hat{\Lambda}^{ij}\right)\\ \hat{\nabla}^{i}\hat{\nabla}_{i}(\alpha\psi) &= 2\pi\alpha\psi^{5}\left(\rho h(3(\alpha u^{t})^{2} - 2) + 5p + \frac{7}{64\pi\alpha^{2}}\hat{\Lambda}_{ij}\hat{\Lambda}^{ij}\right)\\ \hat{\nabla}^{i}\hat{\nabla}_{i}\beta^{j} &= 16\pi\alpha\psi^{4}S^{j} - \frac{1}{3}\hat{\nabla}^{j}(\hat{\nabla}_{k}\beta^{k}) + \hat{\Lambda}^{jk}\hat{\nabla}_{k}\ln\left(\frac{\alpha}{\psi^{6}}\right)\\ \rho_{H} &:= n_{a}n_{b}T^{ab} \quad S^{j} := -\delta^{j}_{a}n_{c}T^{a}_{c} \qquad \hat{\Lambda}^{ij} := \hat{\nabla}^{i}\beta^{j} + \hat{\nabla}^{j}\beta^{i} - \frac{2}{3}f^{ij}\hat{\nabla}_{k}\beta^{k}\\ T^{ap} := \rho hu^{a}u^{b} + pg^{ab} \end{split}$$

Formulation - contd.

[equations of hydrodynamics]

rest mass conservation

$$\partial_a \pi^a + \pi^a \partial_a \ln\left(\frac{\rho}{h}\right) + \pi^a \left(\frac{\partial_a \alpha}{\alpha} + \frac{6\partial_a \psi}{\psi} + \frac{2}{r}\delta^r_a + \cot\theta\delta^\theta_a\right) = 0$$

momentum equation

$$\pi^b \partial_b \pi_j - \pi^b \partial_j \pi_b = 0$$
$$\pi_a := h u_a$$

Linearizing equations above and supplementing with boundary conditions, we set up an eigenvalue problem.

% boundary conditions

- + metric components ψ , α , β^{j} --- regularity at the origin & at the infinity
- + fluid variables h, π_j --- regularity at the origin

stress free surface :

 $\Delta p = 0$ (Lagrangian perturbation of pressure vanishes).

Numerical treatment

(A) metric part: given sources (S), formal solutions are obtained by Green's functions

$$\hat{\nabla}_i \hat{\nabla}^i q = S \quad \to \quad q = \int S(\vec{y}) G(\vec{x}|\vec{y}) dV_y$$

(A) and (B) are iteratively solved. => eigenmode!

Numerical treatment - contd.

* background star is stationary and axisymmetric => perturbation is decomposed into harmonic components $\delta f \sim \exp[-i\sigma t + im\varphi] \cdot F(r,\theta)$ The problem is reduced to 2D eigenvalue problem.

* Surface-fitted coordinate: $r = R_s(\theta^*) r^*$ $p(R_s, \theta) = 0$ (equilibrium surface) $\theta = \theta^*$

> Equilibrium stellar surface is always mapped to $r^*=I$. ==> Boundary condition is easy to impose.

-- For stellar interior, "fluid" and "metric" grids are staggered.

Symmetry axis

Results - quadrupole modes of slowly rotating star

$\delta f \sim \exp(-i\sigma t + im\varphi)$					
$\sigma = \sigma^0 + m \sigma' \Omega$					
	nor	n-rotating	rotational correction		
Mode	M / R	$\sigma_{CFA}^0/\sigma_R^0$	σ_{Cw}^0/σ_R^0	$\sigma_{CFA}^{\prime}/\sigma_{R}^{\prime}$	$\sigma_{Cw}^\prime/\sigma_R^\prime$
f	0.100	0.998	I.26	0.998	1.02
	0.200	0.997	1.15	1.00	1.01
Ρ,	0.100	1.00	1.10	0.994	1.00
	0.200	0.997	1.11	0.991	1.01
P ₂	0.100	1.00	I.05	0.997	1.00
	0.200	0.999	1.06	1.00	1.00

EOS ---
$$p = K\epsilon^2$$

Cw: Cowling approximation (Yoshida & Kojima 1997)

Results - quadrupole modes of slowly rotating star

eigenfunctions of P₁ mode

CFS instability Chandrasekhar (1970), Friedman & Schutz (1985)

instability in pulsations of rotating stars that couple to (gravitational) radiation field ---- f-mode, r-mode instability

From the <u>inertial frame</u>, the star (with a marker dot) and the mode pattern is rotating in clockwise direction.

Angular momentum carried away by gravitational wave has <u>the same sign</u> <u>as that of the star</u>.

From the <u>corotating frame</u> of star (in which the star is at rest), the mode pattern is rotating in counter-clockwise direction. This <u>mode has an opposite sign of canonical</u> <u>angular momentum to that of star</u> (and that of gravitational wave).

corotating frame view

zeroes of frequency (seen from the inertial frame) marks the onsets of the instability.

Results - sequences of counter-rotating f-modes

Equilibria: computed by COCAL code (Uryu & Tsokaros 2012) EOS: $p = K\rho^2$

Summary

We developed a new code to solve eigenmode problem of rotating star with arbitrary rotation.

spatially conformal flatness approximation
=> suppressing gravitational radiation

Compared to conventional Cowling approximation, the eigenmodes obtained are highly improved.

What's coming next?

- * differential rotation --- proto-NS ; dynamical instability of rotating stars
- * nuclear EOS --- asteroseismology of NS
- * stably stratified star --- g-modes of rotating stars in GR