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Studies of oscillations of rapidly rotating relativistic stars

astrophysical interests

as sources of gravitational wave v ~ several - (10° — 10°)Hz

ground-based laser-interferometers
resonant detectors

stability of stars

determining maximum masses/rotational period of NS

Aim of the studies:
Compute characteristic(eigen-) frequencies of “realistic’” NS models.

Determine the stability boundaries of a parameter space of rotating stars.
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Preceding studies of oscillations of rotating stars in GR

via traditional eigenvalue problem

Kojima (1992,1997) slow-rotation
Yoshida & Kojima (1997) slow-rotation

Cutler & Lindblom (1992) post-Newtonian

Yoshida & Eriguchi (1997,1999) Cowling; f-modes
Yoshida & Eriguchi (2001) Cowling; axisymmetric modes
Yoshida et al. (2002,2005) Cowling; f-modes

Lockitch et al. (2001) slow-rotation, relativistic inertial modes

Ruoff & Kokkotas (2001,2002) slow-rotation, relativistic r-
modes

Ferrari et al. (2004) Cowling; rotating proto-NS
Passamonti et al. (2006) slow-rotation
Ferrari et al. (2007)

“Cowling”’=Cowling approximation where metric perturbation
is neglected

via direct hydrodynamical simulations

Font et al. (2001) Cowling; axisymmetric oscillations
Dimmelmeier et al. (2006) spatially conformal-flat;
axisymmetric oscillations

Saijo et al. (2001) post-Newtonian
Saijo (2005) spatially conformal-flat

Shibata & Sekiguchi (2003) full GR; axisymmetric oscillations
Shibata & Karino (2004) post-Newtonian; bar-mode instability
Shibata & Sekiguchi (2005) full GR; dynamical instability

Stavridis et al. (2007) slow-rotation(differential)

Kastaun et al. (2010) Cowling

Krueger et al. (2010) Cowling

Gaertig & Kokkotas (2009,201 1) Cowling (also g-modes)

Baiotti et al. (2007) full GR; bar-mode instability

Manca et al. (2007) full GR; dynamical instability
Takami et al. (201 1) full GR; axisymmetric instability

* non-linear hydrodynamic simulation

* linear hydrodynamic simulation
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Full GR treatment is rather expensive!

* eigenvalue problem - no formulation exists except for slowly rotating cases!
(messy equations; how do we impose boundary conditions?)

* direct numerical simulations - numerically expensive
identification & extraction of eigenmodes!?

For a “fluid mode”, its gravitational damping time is several orders of magnitude
longer than the period —> We may neglect the gravitational radiation effect.

But, neglecting all the gravitational perturbation (Cowling approximation) is not satisfactory,
especially for the low-order modes.

We want something better than Cowling, but easier to handle than “full GR”.

v

Conformally flat approximation!!
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General relativistic hydrodynamics with spatially
conformally-flat approximation

Isenberg (1978) ;Wilson et al. (1996) : Solving system of elliptic egs. for metrics
“Isenberg-Wilson-Mathews theory”

Applications

Wilson et al.(1996) - binary NS quasi-equilibrium
Glanclement et al. (2002) - binary BH quasi-equilibrium
Oechslin et al. (2002;2004) - NS merger

Faber et al. (2004) - NS merger

Dimmelmeier et al.(2002) - Core-collapse SN

Saijo (2005) - bar-instability in core collapse

Dimmelmeier et al.(2006) - Non-linear oscillations of NS
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Formulation

assumptions

+ a background star - stationary, axisymmetric, isentropic
+ barotropic EOS - no buoyancy (no g-modes)
+ linear perturbation

+ spatially conformally flat approximation (CFA) of gravity
- both equilibrium & perturbed state

[CFA]
ds* = —a?dt® + " fi;(da’ + B'dt)(dx’ + B?dt);  fi;: flat metric

“(3+1)-" form of Einstein’s equation in CFA:
Hamiltonian & Momentum constraint, “evolution™ of Kij (K=0)
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Formulation - contd.

[equations of hydrodynamics]

rest mass conservation

a a 2
8a7ra—|—7rac9aln(£)—|—7r“ (804+68¢+

o) Y r

>

6" + cot 952) =0
momentum equation
mOym; — wP0;m, = 0
T, = hug

Linearizing equations above and supplementing with boundary
conditions, we set up an eigenvalue problem.

% boundary conditions

+ metric components v, «, [3’--- regularity at the origin & at the infinity
+ fluid variables h, 7; --- regularity at the origin
stress free surface :
Ap =0 (Lagrangian perturbation of pressure vanishes).
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Numerical treatment

(A) metric part: given sources (S), formal solutions are obtained by Green’s functions

V,Vig=S — g= / S(7)G(Z)7)dV,,

(B) fluid part: equations are descretized

U(f) — g(q ) f : array vector of fluid variables
T U : array of operators describing hydro-equations

regarded as source terms when q is given

Equations of fluid part are solved by Newton-Raphson method.

(A) and (B) are iteratively solved. => eigenmode!
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Numerical treatment - contd.

* background star is stationary and axisymmetric
=> perturbation is decomposed into harmonic components

Of ~ exp|—iot + imy] - F(r,0)
The problem is reduced to 2D eigenvalue problem.
r = RS(H*) r* p(Rs,0) = 0 (equilibrium surface)
6 =0~

Equilibrium stellar surface is always mapped to r*=|I.
==> Boundary condition is easy to impose.

* Surface-fitted coordinate:

computational grids
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* radial grid points: non-uniform distribution (r*=1 on the equatorial surface)
* angular grid points: zeroes of Legendre function
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-- For stellar interior, “fluid” and “metric” grids are staggered.

Equater
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Results - quadrupole modes of slowly rotating star

0f ~ exp(—iot + 1myp)
c=0"4+mag 0

/ N\

non-rotating rotational correction

Mode M/R 0CralOR | OCw/OR ocralOR 00w/ TR
f 0.100 0.998 .26 0.998 1.02
0.200 0.997 .15 1.00 .01

P, 0.100 1.00 .10 0.994 1.00
0.200 0.997 |11 0.991 .01

P, 0.100 1.00 .05 0.997 1.00
0.200 0.999 1.06 1.00 1.00

EOS - p = K¢

Cw: Cowling approximation (Yoshida & Kojima 1997)
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CFS |nStab|I|ty Chandrasekhar (1970), Friedman & Schutz (1985)

instability in pulsations of rotating stars that couple to (gravitational)
radiation field --- f-mode, r-mode instability

From the inertial frame, the star (with a
marker dot) and the mode pattern is rotating
in clockwise direction.

Angular momentum carried away
by gravitational wave has the same sign
as that of the star.

inertial
frame
view

From the corotating frame of star (in

which the star is at rest), the mode pattern

is rotating in counter-clockwise direction.

This mode has an opposite sign of canonical
angular momentum to that of star (and that of
gravitational wave).

corotating
frame
view

zeroes of frequency (seen from the inertial frame) marks the onsets of the instability.
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Results - sequences of counter-rotating f-modes

Equilibria: computed by COCAL code (Uryu & Tsokaros 2012)
EOS: p = K p?
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sequences f-modes (I=m=2) with compactness M/R=0.20

m=3 (Cowling)
m=4 (CO\INIing)I

O 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
T/W (kinetic energy/gravitational energy)

o
‘exact’ neutral

points (Stergioulas
& Friedman 1998)
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Summary

We developed a new code to solve eigenmode problem of
rotating star with arbitrary rotation.

spatially conformal flatness approximation
=> suppressing gravitational radiation

Compared to conventional Cowling approximation, the eigenmodes
obtained are highly improved.

What’ s coming next?
* differential rotation --- proto-NS ; dynamical instability of rotating stars
* nuclear EOS --- asteroseismology of NS
* stably stratified star --- g-modes of rotating stars in GR
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