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Magnetized Binary Neutron Star Mergers 

Magnetic Fields of NS （Manchester 04） 

1011-14 G 

Spin period 

P
e
ri

o
d

 d
e
ri

v
a
ti

v
e
 

Neutron stars have a magnetic field in general. 

What about  in binary neutron star 

mergers ?  

Possible amplification processes 

‣ Kelvin-Helmholtz instability (Price-

Rosswog 06, Gaicomazzo+ 11) @merger 

‣ Magnetorotational instability 
(Balbus-Hawley 98, Rezzolla+ 11) in HMNS / 

disk 

‣ Compression 

‣ Magnetic winding 



Mass of observed NSs 
(Lattimer & Paraksh 06) 

Outcome of binary neutron star mergers 

Shapiro-Time delay of PSRJ1614-2230 
(Demorest+ 10) 

‣Canonical mass of BNS = 2.7-2.8 M


 

‣Maximum mass of spherical NS = 1.97 ±0.04 M


 

Long-lived Hyper Massive Neutron Star (HMNS) would be 

formed after the merger  

⇒ Magnetic fields would be an important player in binary 

neutron star mergers, e.g., angular momentum transport etc. 



NR simulations for magnetized BNS mergers 

✓Albert Einstein Institute (Giacomazzo+ 09, 11, Rezzolla+ 11) 

‣ Γ-law EOS  

✓Illinois University (Liu+ 08) 

‣ Γ-law EOS 

✓ Louisiana University+ (Anderson+ 08) 

‣ Γ-law EOS 

 

All the simulations have been done so far 

‣  Relatively short duration ≾ 20 ms after merger or BH 

formation   

‣  Applied only Γ-law EOS 

 

Our motivation 

‣ Long term simulation for exploring the magnetic  

amplification process 

‣ Adopt the nuclear theory based EOS 



Set up 

‣ Equation of State : H4 based on RMF (Gledenning & Moszkowski 91)  

    Mmax ≳ 2.03 M
  and Γ-law for thermal part  (Γth=1.8) 

   P = Pcold + Pth 

‣ BNS mass :  2.7 M


, 2.8 M
 (Equal mass system) 

‣ Magnetic fields configuration : Confined 

GRMHD simulation of magnetized BNS mergers 

Confined field line (Liu+08) 



‣ Code description : FMR – GRMHD code based on Balsara’s 

method preserving Div · B  = 0 as well as the magnetic flux 

conservation (KK+ 12 ) 

 

Formulation and Numerical scheme 

‣Baumgarte-Shapiro-Shibata-Nakamura formulation (Shibata-

Nakamura 95, Baumgarte-Shapiro 99) 

‣4th-order FD in space and time for the Einstein eqs. 

‣LLF flux and 3rd-order reconstruction for MHD 

‣Weno5 for reconstruction in the refinement boundary 

 

Resolution Study 

‣ High resolution       Δx = 230 m  (NS covered by 100 grid points) 

‣ Medium resolution  Δx = 288 m  (NS covered by 80 grid points) 

‣ Low resolution         Δx = 384 m  (NS covered by 60 grid points) 

 

GRMHD simulation of magnetized BNS mergers 







Property of BH and torus 

Density and angular velocity profile along x-axis 

‣ Mass of BH is 2.6-2.7 M  and spin of BH is ≈ 0.7 

‣ Almost Keplerian profile (∝ R -3/2) 

‣ Torus mass ≈ 0.03-0.04 M
 @ 30 ms after BH formation 

‣ MRI wavelength would be larger compared to HMNS, e.g.,  

 ρ  ≈ 1015 g / cm3 



Magnetic field amplification (2.8 M
 - confined model) 
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BH formation 

‣ Rapid increase at t – tmerge ≈ 0 ms 

‣ Slow increase in the HMNS phase 

‣ Exponential growth after the BH formation (inside 

the torus) 



Rapid increase at t – tmerge ≈ 0 ms 

Magnetic field strength 
Vorticity @ t – t merge ≈ 0 ms 

‣ Poloidal field increases by compression ∼ ρ2/3 

‣ Toroidal field increases by the Kelvin-Helmholtz 

instability (Price-Rosswog 06, Anderson + 08, Gaicomazzo+ 11) 

‣ Vortexes appear in the shear layer forming the two stars 

come into contact. 



Slow increase in the HMNS phase 

‣ Poloidal field increases due to the compression 

‣ Toroidal field increases by the magnetic winding 

‣ Very short MRI wavelength, i.e., ρ ∼1015 g / cm3  

Magnetic field strength 



Exponential growth after the BH formation 

High 
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‣ Exponential growth in the high resolution, not in the low 

resolution, after the BH formation 

‣ e-folding time ≈ 6 ms (high resolution model) 

‣ Saturation level ≈ 3-5×1048 erg (1-2 % of kinetic energy) 

Saturation 

BH formation 



Grid resolution vs MRI wavelength 

‣ Red region  

= MRI wavelength is 

covered by more than 10 

grid points 
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2.7 M
  model 

‣ Strong magnetic pressure for the confined model 

 ‣ 2.7 M
 model is marginally stable 

‣ Already reaches to a saturation level ≈ 2 ×1049 erg (3-5 % of 

kinetic energy)  

BH formation 

Saturation 



Mass ejection 

Mass ejection is important for the electromagnetic 

counter part of BNS mergers 

‣synchrotron radiation (radio) (Nakar & Piran 11) 

∼ 2.5 mJy (E0/1049erg)(n0/1cm-3)1/2(β/0.2)-1 (D/300Mpc)-2 

‣r-process elements (optical) (Li-Paczynski 98, Metzger+10, 12) 

tpeak ∼ 0.1 day (β/0.2)-1/2 (Meje/10-3 M )1/2 

Lpeak ∼ 7 ×1041 erg/s (f/3×10-6) (β/0.2)1/2 (Meje/10-3 M )1/2 

2.7 M


– confined B 

2.8 M


– confined B 

‣Rapid rise due to the gravitational 

torque @ the merger  

‣ Meje ≈ several ×10-4 M
 

‣ Kinetic energy E0 ≈1049-50  erg 



Summary for magnetized BNS mergers 

‣  Torus around the BH is subject to the MRI 

Long term and high-resolution simulation is essential 

‣ Turbulent magnetic field develops inside the torus 

‣ Saturation of MRI : magnetic energy ≈ 1-5 % of kinetic 

energy 

 

Future work 

‣ Higher resolution simulation, ultimately Δx ≈ 100 m 

on K computer 

‣ Weak magnetic field, e.g., 1011-13 G for observed NSs 

‣ Systematic study for EOS 

‣ Equilibrium configuration of magnetized binary neutron 

stars as initial conditions 



Luminosity 

2.7 M
  model 2.8 M

  model 



Gravitational wave astronomy and binary neutron 

star mergers 

Gravitational waves  

‣ Imprinting “raw” information of 

sources 

‣ Extremely weak signal, hc∼10-22 

Binary neutron star (BNS) mergers 

‣ Promising source of GWs : 10 events / yr for KAGRA 

‣ High-end laboratory for the nuclear theory : 

Reconstruction of Mass-Radius relation 

‣ Theoretical candidate of Short-Gamma-Ray Burst 
(Narayan+ 92) 



Numerical Relativity 

BNS mergers 

‣ Density ∼1015 g / cm3 (Strong interaction) 

‣ Temperature ∼1011 K (Weak interaction) 

‣ Strong gravity (Gravity) 

‣ Magnetic field ∼1011-14 Gauss (Electromagnetic force) 

 

 Numerical Relativity :  Simultaneously solving  

‣ the Einstein equations 

‣ Relativistic (magneto) hydrodynamics 

‣ Radiation field for neutrino 

 

Unique approach to explore phenomena in strong gravity 



Dipole field line 

Dipole model 

BH formation 



2.8 M
  - Dipole model 

High 
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Low 
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Saturation 

BH formation 

‣ Exponential growth in the high and middle resolution, not in 

the low resolution after the BH formation 

‣ e-folding time ≈ 6 ms (high resolution model) 

‣ Saturation level ≈ 6-7 ×1048 erg (2-3 % of the kinetic energy) 
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