

Hiromi Saida, JGRG 22(2012)111341

"Theory for observational verification of black hole existence"

RESCEU SYMPOSIUM ON

GENERAL RELATIVITY AND GRAVITATION

JGRG 22

November 12-16 2012

Koshiba Hall, The University of Tokyo, Hongo, Tokyo, Japan

Theory for observational verification of black hole

Hiromi Saida (Daido Univ.) / saida@daido-it.ac.jp

light signal BH Earth gas cloud

JGRG22, 2012.11.12–16 at Tokyo Univ.

1. Intro.

- I want to see black hole : **Directly observe the black hole horizon**
 - \rightarrow We suggest,
 - The observable verifying the existence of BH horizon
 The observable measuring the surface gravity of BH horizon
- Note: Our observable is realized in <u>any wave</u> propagating on BH spacetime (GW, EM waves, and so on), and <u>independent of details</u> of BH environments.

- 2. Set up a situation : a simple example
- Consider the radially alinged situation

Black hole	: Schwarzschild \rightarrow radius $R_{\rm BH}$
Source	: radial free fall (time like geodesic)
Wave	: propagate on a radial null geodesic
Observer	: rest at a distant point

♦ Note: It is found observationally that, in next summer 2013, a gas cloud is going to fall into the BH candidate at the center of our galaxy.

- 3. The observable verifying the existence of BH horizon
- The source is falling into BH

 \Downarrow

- \rightarrow The wave length of wave emitted by this source is prolonged infinitely by the Grav. Doppler (redshift) due to BH horizon.
- \rightarrow The infinite prolongation of wave length can verify the existence of BH horizon.

The freezing of wave should be observed. (Numerical example is shown next)

• Ex.Freezing oscillation of observed wave $(\downarrow "Gas's" = "Source's" \downarrow)$

 \rightarrow The freezing oscillation appears in observation, when the source approaches BH horizon ($r \sim 3M$).

4. The observable measuring the mass and angular momentum of BH horizon

• Look precisely at the freezing ocsillation of observed wave:

Time eovlution of the phase of observed oscillation (wave)

$$\Theta(t_{\rm obs}) = \int \omega_{\rm obs} \, \mathrm{d}t_{\rm obs} \sim \omega_0 \, \exp\left[-\frac{c \, t_{\rm obs}}{2R_{\rm BH}}\right] \,, \, \begin{cases} \omega_0 = \mathrm{const.} \\ t_{\rm obs} = \mathrm{observer's time} \end{cases}$$

 \rightarrow Power spectrum of this time evolution \propto **Planckian distribution**

 $\begin{cases} \text{Typical oscillation} : \Psi(t_{\text{obs}}) = A(\omega_0) \exp[i\Theta(t_{\text{obs}})] \\ \text{Fourier trans.} : F(\Omega, \omega_0) = \int_{-\infty}^{\infty} e^{-i\Omega t_{\text{obs}}} \Psi(t_{\text{obs}}) \, \mathrm{d}t_{\text{obs}} \\ \therefore P(\Omega) := |F(\Omega, \omega_0)|^2 \sim \frac{4\pi R_{\text{BH}} |A|^2}{c} \frac{1}{\Omega} \frac{1}{e^{4\pi R_{\text{BH}}\Omega/c} - 1} \end{cases}$

$$\rightarrow \left[\text{"Temperature"} \ \frac{\hbar c}{4\pi R_{\text{BH}}} \text{ shown in time evolution } \right]$$
$$= \left[\text{Hawking temperature } \frac{\kappa}{2\pi} \right] \quad (\kappa : \text{ surface gravity of BH})$$
for Kerr BH, $\kappa = \frac{\sqrt{M^2 - a^2}}{2\left(M^2 + M\sqrt{M^2 - a^2}\right)}$

\rightarrow This gives a relation of M and aindependent of details of BH environment.

 \rightarrow Combining with the other observation,

M and a will be determined observationally.

• But there is a point of notice w.r.t. observation \cdots

Real observation detects the wave as an oscillation of "real number". ($\Psi(t_{obs})$ should be a wave in real number.) ... continued to next page \rightarrow Wave in real number: $\Psi_{\rm R}(t_{\rm obs}) := A(\omega_{\rm emit}) \cos \Theta(t_{\rm obs})$

$$\rightarrow$$
 Fourier trans.: $F_{\rm R}(\Omega, \omega_{\rm emit}) = \int_{-\infty}^{\infty} e^{-i\Omega t_{\rm obs}} \Psi_{\rm R}(t_{\rm obs}) dt_{\rm obs}$

 \rightarrow Power spectrum of time variation:

$$P_{\rm R}(\Omega) := \left| F_{\rm R}(\Omega, \omega_{\rm emit}) \right|^2 \sim \frac{\pi R_{\rm BH} A(\omega_{\rm emit})^2}{c} \frac{h(\Omega)}{\Omega} \frac{1}{e^{4\pi R_{\rm BH}\Omega/c} - 1}$$

where
$$\begin{cases} h(\Omega) = e^{4\pi R_{\rm BH}\Omega/c} + 2 \left[\cos \Theta_{\infty}\right] e^{2\pi R_{\rm BH}\Omega/c} + 1\\ \Theta_{\infty} = \Theta(t_{\rm obs} \to \infty)$$
: "Frozen" Phase

Note 1: In real observation, the frozen phase Θ_{∞} is required in oddle to describe the curve fitting to observed data.

Note 2: $A(\omega_{\text{emit}})$ is a constant depending only on the source, not on the mass and angular momentum of BH.

5. Summary

- The observable verifying the existence of BH horizon
 - \rightarrow The freezing oscillation found in

time evolution of observed wave

- The observable measuring the surface gravity of BH horizon
 - \rightarrow The planckian distribution found in the power spectrum of time evolution of freezing oscillation

(Combining with the other observations, M and a will be determined.)

- Next issue (under consideration):
 - \diamond Application to gravitational collapse
 - \diamond Observation time required to obtain the Planckian distribution

with good precision