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Abstract
We study the effective gravitational stress-energy tensor for short-wavelength per-
turbations in modified gravity theories in the cosmological context. We consider
f(R) gravity theories on the assumptions that (i) the background has the Friedmann-
Lemâıtre-Robertson-Walker symmetry and that (ii) when our f(R) theory reduces
to Einstein gravity. We show by explicit computation that the effective stress-energy
tensor for a cosmological model in our f(R) theories, as well as that obtained in the
corresponding scalar-tensor theory, takes a similar form to that in general relativity
and is in fact traceless, hence acting again like a radiation fluid. If the assumption
(ii) above is dropped, then an undetermined integration constant appears and the
resultant effective stress-energy tensor acquires a term that is in proportion to the
background metric, hence being able to describe a cosmological constant. Whether
this effective cosmological constant term is positive and whether it has the right
magnitude as dark energy depends upon the value of the integration constant.

1 Introduction

Our observable universe appears to be homogeneous and isotropic on large scales, but highly inhomoge-
neous on small scales. It is therefore considerably interesting to consider whether the local inhomogeneities
can have any effects on the global dynamics of our universe, in particular, any effect that corresponds
to a positive cosmological constant or dark energy. A number of authors have explored this possibility
of explaining the present cosmic accelerating expansion by some backreaction effects of the local inho-
mogeneities. Such a backreaction effect may be described in terms of an effective stress-energy tensor
arising from metric as well as matter perturbations.

In general relativity, a consistent expansion scheme for short-wavelength perturbations and the cor-
responding effective stress-energy tensor were largely developed by Isaacson [1, 2], in which the small
parameter, say ϵ, corresponds to the amplitude and at the same time the wavelength of perturbations.
Isaacson’s expansion scheme is called the high frequency limit or the short-wavelength approximation. It
has been shown that this effective stress-energy tensor is traceless and satisfies the weak energy condition,
i.e. acts like radiation [3, 4], and thus cannot provide any effects like dark energy in general relativity.

However, it is far from obvious if this traceless property of the effective stress-energy tensor is a nature
specific only to the Einstein gravity or not. The purpose of this paper is to address this question in a
simple, concrete model in the cosmological context. Among many, one of the simplest of modified theories
so far proposed is the so called f(R) theory. Since f(R) gravity contains higher order derivative terms,
we can anticipate the effective stress-energy tensor to be generally modified in the high frequency limit.

It is well-known that f(R) gravity is equivalent to a scalar-tensor theory, which contains the coupling
of the scalar curvature R to a scalar field ϕ in a certain way. The Brans-Dicke theory is one of the simplest
examples. Therefore, our analysis can be performed, in principle, either (i) by first translating a given
f(R) theory into the corresponding scalar-tensor theory and then inspecting the stress-energy tensor for
the scalar field ϕ, or (ii) by directly dealing with metric perturbations of the f(R) theory. We may expect
that the former approach is much easier than the latter metric approach, as one has to deal with metric
perturbations of complicated combinations of the curvature tensors in the latter case. Nevertheless we
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2 High frequency limit in modified gravity theories

will take the both approaches. In fact, in the metric approach, by directly taking up perturbations of the
scalar curvature R, the Ricci tensor Rab and the Riemann tensor Ra

bcd involved in a given f(R) theory,
we can learn how to generalize our present analysis of a specific class of f(R) gravity to analyses of other,
different types of modified gravity theories that cannot even be translated into a scalar-tensor theory.

In the next section, we consider the high frequency limit in f(R) gravity theory. Based on the
Isaacson’s scheme we expand the field equations for f(R) = R + cR2 theory and first derive the general
expression of the effective stress-energy tensor for gravitational perturbations in our f(R) gravity. Then,
assuming that our background metric has the FLRW symmetry and also that the resulting equations
reduce to the corresponding equations for the Einstein gravity in the limit c → 0, we see that the effective
stress-energy tensor whose expression is significantly simplified, is in fact traceless as in the Einstein
gravity case. As briefly mentioned above, when a given f(R) gravity is translated into the corresponding
scalar-tensor theory, the scalar field ϕ, which expresses an extra-degree of freedom in the f(R) theory,
possess a non-trivial potential term. In Sec. 3, we will make sure that the effective stress-energy tensor in
Brans-Dicke theory is consistent with that in our f(R) gravity. We will also see that in the Einstein frame,
the traceless property of the effective stress-energy tensor is shown to hold in more generic circumstances.
Section 4 is devoted to a summary and points to future research.

2 High frequency limit in f(R) gravity

The field equations in the f(R) gravity have terms consisting of higher order derivatives of R, and the
order of those derivatives are higher than that of R: ∇a1

∇a2 · · · ∇amR(n)[h] ∼ O
(
ϵn−2−m

)
. Therefore

it is expected that the effect of the short-wavelength approximation would be enhanced. In order to
see whether this is the case, from now on we restrict our attention to the following concrete model
f(R) = R+ cR2, where c is a constant. The field equations are

G
f(R)
ab ≡ Gab + 2c

(
RRab −

1

4
gabR

2 −∇a∇bR+ gabg
cd∇c∇dR

)
= κ2T

(0)
ab . (1)

As in Isaacson’s formula, we expand the above equations with respect to the small parameter ϵ. From
now on, we consider the cosmological context. We assume that our background is spatially homogeneous
and isotropic, that is, our background metric possesses the FLRW symmetry. Then, thanks to this
background symmetry we can explicitly solve equations of the form ∇a∇bS(t, x⃗) = 0. The equations
of motion of O

(
ϵ−3

)
is solved to yield R(1)[h] = const. Taking the average, we find R(1)[h] = const. =

⟨const.⟩ =
⟨
R(1)[h]

⟩
= 0. Then, those of O

(
ϵ−2

)
become ∇a∇bR

(2)[h] = 0. We find R(2)[h] ≡ S1 =

const. By using above equations, the equation of O
(
ϵ−1

)
immediately yields

□R(3)[h]−Rab[g
(0)]□hab = 0 , (2)(

1 + 2cR[g(0)] + 2cS1

)
R

(1)
ab [h] = 2c

(
∇a∇bR

(3)[h]−Rcd[g
(0)]∇a∇bh

cd
)
. (3)

The effective stress-energy tensor is then expressed as

κ2T eff
ab = −

⟨(
1 + 2cR[g(0)]

)
R

(2)
ab [h]−

1

2
g
(0)
ab S1

+2c
{(

R(3)[h]− hcdRcd[g
(0)]

)
R

(1)
ab [h] + S1

(
Rab[g

(0)] +R
(2)
ab

)}
− c

2
g
(0)
ab

(
2R[g(0)] + S1

)
S1

+2c
(
−g

(0)
ab h

cd
)(

∇c∇dR
(3)[h]−Ref [g

(0)]∇c∇dh
ef
)⟩

. (4)

This is the most general expression of our effective stress-energy tensor.
We immediately notice that our expression (4) contains the integration constant S1. There does not

seem to be a definite way to determine S1 within the framework of the present f(R) theory itself. As a
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sensible way to specify S1, let us assume in the following that the effective stress-energy tensor (4) in the
R2 model should reduce to that in general relativity when c = 0, and accordingly choose S1 (= R(2)[h])
to be 0. Then, (4) becomes

κ2T eff
ab = −

⟨(
1 + 2cR[g(0)]

)
R

(2)
ab [h] + 2c

(
R(3)[h]− hcdRcd[g

(0)]
)
R

(1)
ab [h]

⟩
, (5)

where we have used (3) in the first equality above, and
⟨
hcdR

(1)
cd [h]

⟩
= 0 in the second equality so as to

make the above expression compatible with that of general relativity in the c = 0 case. Then using this
and R(1)[h] = 0, we can find that κ2T eff

ab is in fact traceless:

κ2T effa
a = 0 . (6)

It should be stressed that as mentioned above, there is a prior no way to determine S1 by the theory
itself. If we choose S1 to be, instead, a non-zero constant, then the effective stress-energy tensor, (4), has
a term proportional to the background metric, that is, a cosmological-constant-looking term, even in the
limit to the Einstein gravity.

3 The high frequency limit in scalar-tensor theory

In the previous section, the scalar curvature R and the Ricci tensor Rab are taken up directly in the
metric formalism of the f(R) gravity. It is well-known that any f(R) gravity theory is included in Brans-
Dicke theory, which is one of the simplest examples of scalar-tensor theory. In this section, we will see
that the results obtained in the previous section are indeed consistent with those obtained within the
corresponding scalar-tensor theory.

In the Jordan frame, the f(R) gravity of the metric formalism can be cast into the form of the above
Brans-Dicke theory by setting ϕ = F (R) ≡ df(R)/dR, ωBD = 0 and V = (FR − f)/2. In this case, as
one can find R− 2∂ϕV = 0, the equations of motion for ϕ and gab just given above become, respectively

□ϕ− 1

2ϕ
∇aϕ∇aϕ = κ2T

(0)
ϕ ab , (7)

GST
ab ≡ ϕ

(
Rab −

1

2
gabR

)
−∇a∇bϕ+ gab

(
gcd∇c∇dϕ+ V (ϕ)

)
= κ2T

(0)
ab . (8)

From now we consider short-wavelength perturbations for ϕ: ϕ = ϕ0 + δϕ. We also assume that there
is no coupling of matter fields with the second-order derivatives of ϕ, so that there are no non-vanishing
terms of order O(ϵ−1) in the stress-energy tensor for matter fields. Then, the equation of motion for ϕ
of O

(
ϵ−1

)
is □δϕ = 0. and the equations of motion for gab of O

(
ϵ−1

)
are

ϕ0

(
R

(1)
ab [h]−

1

2
g
(0)
ab R

(1)[h]

)
= ∇a∇bδϕ− g

(0)
ab □δϕ . (9)

Contracting with g(0)ab, we have R(1)[h] = 3□δϕ/ϕ0 = 0. From this, we can immediately find R
(1)
ab [h] =

1∇a∇bδϕ/ϕ0. The equations of motion in O (1) are given by GST
ab [g

(0), ϕ0] = κ2T
(0)
ab + κ2T eff

ab , where

κ2T eff
ab ≡ −

⟨
ϕ0R

(2)
ab [h] + δϕR

(1)
ab [h]− g

(0)
ab h

cd∇c∇dδϕ
⟩
. (10)

Here we would like to emphasise that so far we have made no assumptions concerning the form of f(R)

or the symmetry of our background metric g
(0)
ab ; the above expression, (10), applies to the generic f(R)

theory with an arbitrary background metric.
If we restrict the form of f(R) to be f(R) = R+cR2, then by inspecting the expansions ϕ = ϕ0+δϕ+· · ·

and F (R) = 1+ 2cR =
(
1 + 2cR[g(0)]

)
+2c

(
R(3)[h]− hcdRcd[g

(0)]
)
+ · · · , we find ϕ0 = 1+ 2cR[g(0)] and

δϕ = 2c
(
R(3)[h]− hcdRcd[g

(0)]
)
. Using these, we have

κ2T eff
ab = −

⟨(
1 + 2cR[g(0)]

)
R

(2)
ab [h]

+2c
(
R(3)[h]− hcdRcd[g

(0)]
)
R

(1)
ab [h]− g

(0)
ab ϕ0h

cdR
(1)
cd [h]

⟩
. (11)
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Now we work on the cosmological situation so that the background metric has the FLRW symmetry.
Provided that the limit c → 0 should reproduce results in the case of the Einstein gravity, we finally
obtain

κ2T eff
ab = −

⟨(
1 + 2cR[g(0)]

)
R

(2)
ab [h] + 2c

(
R(3)[h]− hcdRcd[g

(0)]
)
R

(1)
ab [h]

⟩
. (12)

We see that the expression (12) above is precisely the same as (5) derived within the metric formalism
of the f(R) gravity. This verifies our methods of Sec. 2 for dealing with short-wavelength perturbations
of the f(R) gravity within the metric formalism.

In the Einstein frame, the action becomes SE =
∫
d4x

√
−g̃{R̃ − (∇̃ϕ̃)2 − Ṽ (ϕ̃)}/(2κ2), where g̃ab ≡

Fgab, ϕ̃ ∝ lnϕ and Ṽ ≡ V/F 2. From this action, one can find that the equation of motion of O
(
ϵ−1

)
is □δϕ̃ = 0 and the effective stress-energy tensor is κ2T eff

ab =
⟨
∇̃aδϕ̃∇̃bδϕ̃

⟩
. It then immediately follows

that the effective stress-energy tensor must be traceless, i.e., T effa
a = 0. This can be shown only on the

assumption of the FLRW symmetry.

4 Summary

We have addressed the effective gravitational stress-energy tensor for short-wavelength perturbations in
the simple class of f(R) gravity of R2 type in the cosmological context. By imposing that our background
has the FLRW symmetry, we have derived our effective stress-energy tensor for short-wavelength metric
perturbations in cosmological models. At this point, thanks to the background FLRW symmetry, the
spacetime averaging over several wavelengths and our choice of the constant S1 = 0, the expression of our
effective stress-energy tensor has been significantly reduced to have the simple form, (5). We have also
shown that the obtained effective stress-energy tensor is traceless, so that it acts like a radiation fluid as
in the Einstein gravity case and thus, in particular, cannot mimic dark energy.

We would like to stress that in order to obtain the traceless feature of our effective stress-energy tensor,
we have set S1 = 0. However, the field equations for the Einstein gravity need not be, a prior, reproduced
in the limit to the Einstein gravity: c → 0. In that case S1 could take a non-vanishing value and give
rise to a cosmological-constant looking term in our effective stress-energy (4). It would be interesting to
consider the question of whether there exists any sensible way to provide the right sign and magnitude
for S1 so that (4) can mimic dark energy within the framework of our modified gravity theory.

Our formulas derived in Sec. 2 deal directly with the scalar curvature R and the Ricci tensor Rab,
and therefore should be able to apply to similar analyses of other modified gravity theories which contain
higher order curvature terms composed of R, Rab, and Ra

bcd and which cannot even be cast in the form
of a scalar-tensor theory. It would be interesting to consider an extension of our present work to a wide
class of modified gravity theories with high-rank curvatures.
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