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Abstract
We consider the curvature perturbation resulting from multi-field inflation models
in which potentially all fields are non-minimally coupled to the Ricci scalar. We
confirm that, unlike in the single field case, the curvature perturbations associated
with the Jordan and Einstein frames are not the same, and that the difference is a
direct consequence of the isocurvature perturbations inherent to multi-field models.
Using the δN formalism, and focusing on analytically soluble examples, we see how
the statistical properties of the two curvature perturbations are also not necessarily
the same.

1 Introduction

Despite the agreement of predictions from single-field inflation models with current observational data, in
the context of unifying and higher-dimensional theories it is natural to consider the presence of multiple
fields during inflation. Moreover, as a consequence of the compactification of higher dimensions, or
following renormalisation arguments, it is expected that these multiple fields be non-minimally coupled
to the Ricci scalar [1]. It is therefore very important to determine any possible observational signatures
that such multi-field models with non-minimal coupling might give rise to. The type of model that we
are considering takes an action of the form

S =

∫
d4x
√
−g
{
f(φ)R− 1

2
hab(φ)gµν∂µφ

a∂νφ
b − V (φ)

}
, (1)

In determining the observational predictions of different inflation models, we are largely interested in
the statistical properties of the primordial fluctuations they produce. In particular, we are interested in
determining the curvature perturbation on constant density hypersurfaces, ζ, and its statistical properties.
In order to make calculations more tractable for an action of the form (1) it is common practise to make
the conformal transformation gµν = Ωg̃µν in order to bring the gravity part of the action into the canonical
Einstein-Hilbert form, namely

S =

∫
d4x
√
−g̃

{
R̃

2
− 1

2
Sab(φ)g̃µν∂µφ

a∂νφ
b − Ṽ (φ)

}
, (2)

with

Sab =
1

2f

(
hab +

3fafb
f

)
and Ṽ (φ) =

V

4f2
. (3)

The action in its original form is referred to as being in the Jordan frame, and the transformed form
as being in the Einstein frame. However, we see that we need to be careful to consider which metric
matter is minimally coupled to, and if it is minimally to the original metric then we must be careful to
relate ζ̃ calculated in the Einstein frame back to the original ζ of the Jordan frame. In the case of a
single non-minimally coupled field it is known that the two curvature perturbations are the same to all
orders, and thus their statistical properties too, but this is no longer the case when multiple fields are
considered [2]. The difference is a consequence of the isocurvature modes inherent to multi-field models
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that are absent in the single-field case. Despite the difference in the curvature perturbations, however,
it is important to note that any observable quantities will be independent of the frame in which they are
calculated [3].

In this work we try to clarify the relation between the two curvature perturbations in the case of
multiple non-minimally coupled fields. Using linear perturbation theory we first find that the notion of
adiabaticity is not common to both frames. Namely, even if the curvature perturbation is conserved in
one frame, it is not necessarily conserved in the other. We also find that the two curvature perturbations
are of different magnitude. We then use the δN formalism, applied to analytically soluble examples, to
confirm that predictions for the power spectrum, its tilt and non-gaussianity are in general different for ζ
and ζ̃ if one does not assume the vanishing of isocurvature modes before the end of inflation. If we expect
that the isocurvature modes do eventually decay before the radiation domination era, where ζ = ζ̃, then
this begs the question how is the ζ = ζ̃ limit reached, and how is the final curvature perturbation related
to that at the end of inflation. The details of reheating therefore have to be considered more carefully.

2 Linear perturbations

In each frame we consider perturbations around a FLRW background of the form

ds2 = −(1 + 2AY )dt2 − 2aBYidtdx
i + a2

[
(1 + 2R) δij + 2HT

1

k2
Y,ij

]
dxidxj , (4)

The curvature perturbation on constant density hypersurfaces in the Jordan frame is given as

ζ = R− H

ρ̇
δρ (5)

and similarly in the Einstein frame.
The non-conservtion of ζ on super horizon scales is given as

ζ̇ ' − H

ρ+ p
δpnad (6)

where δpnad = δp− ṗ
ρ̇δρ. The explicit expressions for δp, δρ etc are given in terms of perturbations of the

fields. It is useful to decompose these field perturbations into components along and perpendicular to the
background trajectory - adiabatic and isocurvature modes respectively. On making this decomposition
in the canonical two-field case, one finds that the isocurvature perturbations source the curvature pertur-
bation when there is a turn in the background trajectory, thus leading to its non-conservation [4]. In the
single-field case there is no such isocurvature component (on super-horizon scales) and thus the curvature
perturbation is conserved. In our case we have N fields, meaning that there are N − 1 isocurvature
modes. These can be expressed in terms of the combination

Kab = δφaφ̇b − δφbφ̇a, (7)

which we see will vanish for an adiabatic mode where δφa ∝ φ̇a.
Making the metric decomposition (4) in the Jordan and Einstein frames we find the relation

R̃ = R− δΩ

2Ω
. (8)

We thus see that the two curvature perturbations would be the same in a gauge corresponding to δΩ = 0.
In the single field case, as Ω = Ω(φ), δΩ = 0 ⇒ δφ = 0, which coincides with the constant energy
and comoving gauge conditions in both frames. As such, one finds that the curvature perturbation on
constant density hypersurfaces is the same in the two frames. More generally, however, the gauge δΩ = 0
does not coincide with the comoving or constant energy density gauges of either frame. Moreover, if
Ω is only a function of isocurvature modes, then there is no gauge for which δΩ = 0, as isocurvature
perturbations are gauge invariant.



J. White, M. Minamitsuji and M. Sasaki 3

Explicitly, on super horizon scales we find that the difference in the curvature perturbations on
constant density hypersurfaces as defined in the two frames is of the form [5]

ζ − ζ̃ ≈ AabKab + BabK̇ab, (9)

where Aab and Bab take some complex form in terms of background quantities. The important thing to
note is that the difference is given in terms of the isocurvature modes Kab and their derivatives. As such,
in the absence of isocurvature modes, i.e. δφa ∝ φ̇a, the two curvature perturbations do coincide.

With a non-zero difference between the two curvature perturbations we might also expect that their
evolutions be different. In particular, it may be possible that despite being conserved in one frame, the
curvature perturbation continues to evolve in the other.

In the Einstein frame we find that

δp̃nad = − 2Sabφ
′a

(2κ2f)2(ρ̃+ p̃)
Scd

D(S)φ′d

dt̃
K̃bc, (10)

where a prime denotes a derivative with respect to t̃ (dt̃ =
√

2fdt), K̃ab is defined as in (7) but with dots
replaced by primes and D(S)/dt̃ is the covariant derivative with respect to the field-space metric Sab.
The curvature perturbation is thus sourced by the isocurvature modes when the background trajectory
deviates from a geodesic of the field-space. This is the intuitive generalisation of the canonical two-field
example given above.

Unfortunately, in the Jordan frame there seems to be no such intuitive interpretation as to when the
curvature perturbations is conserved. However, with the difference between the two frames (9) given in
terms of Kab, it is clear that the non-conservation in the Jordan frame will also be a result of sourcing
from the isocurvature modes.

One interesting scenario would arise if the curvature perturbations in both frames were conserved but
with a non-zero difference in their magnitudes. The first property might naively lead us to believe the
evolution to be effectively single-field, but this would then be in disagreement with the second property.
Using a two-field example we show that such a scenario is indeed possible [5].

We consider two fields φ and χ and require that χ̇ = 0 and f = f(χ). This means that the χ field
corresponds to the isocurvature mode and that the non-minimal coupling function only depends on this
component. On imposing conservation of the curvature perturbation in the Einstein frame we find that
the curvature perturbation in the Jordan frame is not necessarily conserved. However, if we further
impose that the effective mass of the χ field be O(ε) then we find

1

H

d

dt
ln(ζ − ζ̃) ∼ O(ε) and ζ − ζ̃ =

fχ
2fε

H√
2k3

(1 + 3f2χ/f)−1/2, (11)

so that to zeroth order in slow roll we also have conservation of ζ whilst maintaining a non-zero ζ − ζ̃.
Comparing this expression with standard slow-roll expressions, we see that in order for ζ and ζ̃ to be of
the correct order of magnitude we require fχ/

√
f ∼ O(ε1/2).

The above two-field example indicates that we have a scenario such as that sketched in Figure 1.
During inflation the two curvature perturbations are not equivalent, but both are conserved. The fact
that we eventually require them to agree (under the assumption that an adiabatic limit is reached) then
means that there must be an intermediate phase where the evolution of the curvature perturbation in
the two frames is very different.

3 δN formalism

In applying the δN formalism we expand the total number of e-foldings between an initial flat hypersurface
shortly after horizon crossing and a final constant energy hypersurface as a function of the initial field
values on the flat hypersurface [6]. In the Jordan and Einstein frames we have

ζ = δN = N,aδφ
a
f +

1

2
N,abδφ

a
fδφ

b
f + ... and ζ̃ = δÑ = Ñaδφ

a
f̃

+
1

2
Ñabδφ

a
f̃
δφb

f̃
+ ... (12)
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Figure 1:

respectively. Comparing these expansions we see that any difference between the curvature perturbations
in the two frames comes from differences in the derivatives of N and Ñ with respect to the initial
conditions and differences in the definition of the flat-gauge field perturbations δφaf and δφa

f̃
.

By considering the definition of δφaf and δφa
f̃

at first order we see that

δφaf ≡ δφa −
φ′a

H
R = (δab +

φ′af,b
2fH

)δφb
f̃
, (13)

where we have used R̃ = R+
f,aδφ

a

2f , H̃ = H+ f ′

2f and here a prime denotes a derivative with respect to

conformal time. A similar relation can be found at second order [7][8].
Turning to the derivatives of N and Ñ , the integral expressions for N and Ñ are given as

N =

∫ ∗
E

Hdη and Ñ =

∫ ∗
Ẽ

H̃dη =

∫ ∗
Ẽ

Hdη +
1

2
ln

(
f∗
fẼ

)
(14)

respectively, where ∗ denotes the initial conditions, E = const. specifies the final constant energy surface
in the Jordan frame and Ẽ = const. the final constant energy surface in the Einstein frame. We see that
the differences thus come from the additional log term in the Einstein frame and the difference in the
definition of the final constant energy surface.

Combining the results up to second order we find [8]

ζ − ζ̃ = (Na −N Ẽ
a )δφa

f̃
+

1

2
(Nab −N Ẽ

ab)δφ
a
f̃(1)

δφb
f̃(1)

(15)

+
fb
2f

∣∣∣∣
Ẽ

∂φb
Ẽ

∂φa∗
δφa

f̃
+

(
fcd
2f

∣∣∣∣
Ẽ

∂φc
Ẽ

∂φa∗

∂φd
Ẽ

∂φb∗
− fcfd

2f2

∣∣∣∣
Ẽ

∂φc
Ẽ

∂φa∗

∂φd
Ẽ

∂φb∗
+

fc
2f

∣∣∣∣
Ẽ

∂2φc
Ẽ

∂φa∗∂φ
b
∗

)
δφa

f̃(1)
δφb

f̃(1)
,

where

N Ẽ
a =

∂

∂φa∗

(∫ ∗
Ẽ

Hdη
)
. (16)

It turns out that contributions to this difference coming from the relation between δφaf and δφa
f̃

cancel

with those from the ln(f∗) term in (14), meaning that it is the difference in definition of the final constant
energy surface that is important. If we consider an adiabatic limit, where final field values are independent
of the initial conditions (∂φa

Ẽ
/∂φb∗ = 0) and the surfaces E = const. and Ẽ = const. coincide, then we

see that ζ = ζ̃ is recovered.
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To determine the power-spectrum, its tilt and non-gaussianity in the Jordan frame we can exploit
relation (13) between δφaf and δφa

f̃
and our knowledge of the correlation functions of δφa

f̃

〈δφa
f̃k
δφb

f̃k′
〉 = (2π)3δ3(k + k′)

H̃2

2k3
Sab. (17)

Defining

Na = Na +
fa
2f

and Nab = ∇a∇bN +
∇a∇bf

2f
− fafb

2f2
, (18)

we find

Pζ(k) = NaNbSab
(
H̃

2π

)2

and fNL =
NaNbNcdSacSbd

[NeNfSef ]
2 . (19)

These are to be compared to the Einstein frame results

Pζ̃(k) = ÑaÑbS
ab

(
H̃

2π

)2

and f̃NL =
ÑaÑb∇c∇dÑSacSbd[

ÑeÑfSef
]2 . (20)

In general the derivatives of the total number of e-foldings with respect to the initial conditions must
be calculated numerically. However, even in the case of non-minimal coupling there are cases where it
can be done analytically. In the slow-roll approximation the equations of motion in the Jordan frame are
of the form

dφa

dN
= 2fhab

Wb

W
, (21)

where W = V/f2. These can be solved analytically if hab = δab and W is either product or sum separable.
Taking the product separable case, in the Jordan frame E = fW/2 and we find [8]

Nc =
1

2f

∣∣∣∣
E

gcE
gc∗

(
fc
f

∣∣∣
E

+ gcE

)
∑
a

(
fa
f

∣∣∣
E

+ gaE

)
gaE

−
∫ φa

∗

φa
E

fc
2f2

gc

gc∗

dφa

ga
(22)

whilst in the Einstein frame we have Ẽ = W/4, which gives

Ñc =
1

2f

∣∣∣∣
Ẽ

gc
Ẽ

gc∗

gc
Ẽ∑

a g
a
Ẽ
ga
Ẽ

−
∫ φa

∗

φa
Ẽ

fc
2f2

gc

gc∗

dφa

ga
, (23)

where ga = Wa/W .

Returning to the two-field example considered at linear order, but no longer imposing the conservation
of ζ̃, at linear level we find

δN − δÑ ' fχ
2fεE

δχf̃ , (24)

which is in agreement with the previous result. Making the same argument as before that fχ/
√
f should

be O(
√
ε), and making some order of magnitude estimates, we find that f̃NL ∼ O(1) × fχχ and that

(fNL− f̃NL)/f̃NL ∼ O(1). As such, the difference in non-gaussianity of ζ and ζ̃ is potentially significant.

On a more general note, we see that at second order fχχ contributes to possible discrepancies between

ζ and ζ̃. This means that even if fχ gives a negligible difference between the results at linear order, a
large fχχ could still potentially give a significant difference at the level of non-gaussianity. Indeed, a well
motivated form for the non-minimal coupling would be f = 1 + ξχ2. In such a case, if the background
trajectory is along χ = 0, we would have fχ = 0 but fχχ = 2ξ. The consideration of specific forms for f
and V and the resulting spectrum parameters is currently under way.
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4 Conclusions

We have explored the relation between the Jordan and Einstein frame curvature perturbations on constant
energy density hypersurfaces in the presence of multiple fields and non-minimal coupling. At linear
order we saw explicitly that they are not the same and that the difference is a direct consequence of
the isocurvature perturbations inherent to multi-field models. We also saw that conservation of the
curvature perturbation in one frame does not imply conservation in the other, but that it is also possible
that both are conserved with a non-zero difference in their magnitudes. At non-linear order we were
able to implement the δN formalism in the Jordan and Einstein frames and saw explicitly that the non-
gaussianity of the two curvature perturbations may also differ in the case that an adiabatic limit has
not been reached. It was clear that the source of the difference is the difference in definition of the final
constant energy surface in the Jordan and Einstein frames. These results highlight the non-observable
nature of ζ itself, and the importance of knowing how both curvature perturbations evolve through
reheating and are related to the temperature anisotropies of the Cosmic Microwave Background. Work
in this direction is currently under way.
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