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ABSTRACT
   Recently a large number of studies have focused on the question of higher 
dimensions. One of the reasons for this is the fascinating new picture of our 
Universe called the braneworld universe. Because the fundamental scale could 
be about TeV in this senario, these models suggest that creation of tiny black 
holes in the upcoming large hadron collider will be possible. The braneworld 
model is an underlying fundamental theory, superstring/M-theory. Although 
superstring/M-theory has been highly elaborated, it is not enough to 
understand black hole physics in the string context. Hence at present to take 
string effects perturbatively into classical gravity is one approach to the study 
of quantum gravity effects. 
   With the restriction that the tension of a string be large as compared to 
the energy scale of other variables, i.e., in the α-expansion, the Gauss-Bonnet 
terms appear as the first curvature correction term to general relativity. 
Though many complicated combinations may appear for the higher order 
corrections, here we will adopt Lovelock gravitational theory expecting some 
aspects of higher curvature corrections are obtained. Lovelock gravitational 
theory is the most general theory which gives the e.o.m. with up to the second 
order derivative. In this theory we investigate the black hole solution and the 
spacetimes with product metric which are Nariai and Bertotti-Robinson types. 
The study of the black hole solution is the direct extension of the works by 
Whitt (1988) and Myers & Simon (1988). The study of the product metric 
will be applied to the spontaneous compactification mechanism without fluxes.



❖ black hole solutions
　In the first part of the poster we investigate black hole solutions in Lovelock 
gravity. Under the static ansatz the gravitational equation of motion becomes 
algebraic equation of the single metric function. Although it can not be solved 
analytically except for some simple cases, we show a technique to find the 
spacetime structure of the solution. We also consider the topological black hole 
solution whose submanifold has curvature k=0, -1. As some examples we study 
the solution in Gauss-Bonnet gravity and“M-theory”model.

 

❖ Nariai and Bertotti-Robinson solutions
　In the second part of the poster we investigate the solution with product 
metric in Lovelock gravity. Under the decomposition into 2-dim. Riemaninan 
manifold and (n-2)-dim. Euclidean submanifold with maximal symmetry, the 
gravitational equation of motion becomes algebraic equation of the single 
metric function. We will give the way to analyze such equation and to classify 
the solution into Nariai, anti-Nariai, Bertotti-Robindon, and Plebanski-Hachyan 
solutions. As some examples we study the solution in general relativity and 
Gauss-Bonnet gravity.



❖ Lagrangian　
◆ We consider the Lovelock lagrangian up to Nth

    order, which gives a quasi-linear 2nd order  

    gravitational equation
 

MODEL

L =
N∑

p=0

αp

(n − 2p)(n − 2)!
Lp

Lp = 2
−p

δ
µ1ν1···µpνp

ρ1σ1···ρpσp
R

ρ1σ1

µ1ν1
· · ·R

ρpσp

µpνp
.

ds2 = −f(r)e−2δ(r)dt2 + f−1(r)dr2 + R(r)2dΩ2
n−2,

k = 1, 0,−1

N ≤
n − 1

2

α : coefficients

L0 : cosmological constant

L1 : Einstein-Hilbelt action

L2 : Gauss-Bonnet term

(n-2)-dim maximally sym. space

❖ Metric
　◆ We assume the n-dimensional static spacetime whose metric is descrived by
 



❖ vacuum: U(F ) = 0

BLACK HOLE SOLUTION
❖ gravitational equation

f(r) = k − r2F (r)

R != const. R = r
gauge

U(F∞) = 0❖ infnity:

F∞ = 0

F∞ > 0

F∞ < 0

:  asymptotically flat

:  asymptotically de Sitter

:  asymptotically anti-de Sitter

δ ≡ 0U(F ) :=
N∑

p=0

αpF
p =

µ

rn−1

mass x

x

x
x

①

②

③

④

⑤

⑥

adS Min. dS

center

center

infinity

infinity

µ/rn−1

U(F )

F



❖ singularity:

◆ central singularity: r → 0

・ n-1 > 2N

　　①　　　　　: spacelike

　　⑥　　　　　: timelike

F0 > 0

F0 < 0

・ n-1 = 2N

　　　　　　　　: timelike

　　　　　　　　: null

　　　　　　　　: spacelike

k̄ > 0

k̄ = 0

k̄ < 0

k̄ := k ±

( µ

αp

)
1

p

k̄ := k −

( µ

αp

)
1

p

even N odd N

  ②　　　　　　　 　 : outer branch sing.

③-⑤　　　　　　　　: inner branch sing.

◆ branch singularity: r → rb > 0

|r| → |rb|−0

|r| → |rb|+0

k + r
2

bFb

> 0

< 0

: timelike

: spacelike

= 0
: timelike

: spacelike

F-U diagram



U(F )

F

µ > 0, k = −1 µ > 0, k = 1

µ < 0, k = 1µ < 0, k = −1

U(Fh)

f < 0

f < 0

f < 0

f < 0

f > 0

f > 0

f > 0

f > 0

BH

CH

CH

BH

U(F )

F

k = 0

f < 0f > 0

CH

BH

❖ event horizon

f(rh) = k − r2

hFh = 0

k = 0 : Fh = 0

k != 0 : µ

(

Fh

k

)

n−1

2

= 0

◆ Only the adS-branch solution has BH for k=0, -1.



❖ Example 1: Gauss-Bonnet gravity
α0 != 0, α1, α2 > 0

U(F )

F

α0 > 0

α0 = 0

α0 < 0

+ branch - branch

◆ 　　　　　　　 for the existence of 

    relevant vacuum.

◆ Solutions in minus branch are 

    asymptotically Mincowski/dS/adS  

    for zero/negative/positive α0, 

    respectively.

◆ Solutions in plus branch are 

    asymptotically adS.

◆ Negative mass solutions have 

    branch singularity.

◆ Solutions in plus branch have BH 

    horizons for k=-1.

α
2

1 − 4α0α2 > 0

◆ For details see

    TT & Maeda, PRD71, 124002 (2005)



❖ Example 2: “M-theory” model
α1 > 0, α4 != 0, n = 10

U(F )

F

adS branch Min. branch

◆ Minkowski and adS branch exist.

◆ For positive mass, Minkowski-branch 

    solution has spacetime central 

    singularity, while adS-branch solution has 

    timelike one.

◆ For positive mass, properties of the 

    branch singularity depends on   . 

◆ Horizon

  ・Minkowski branch, positive mass:

　　There is one BEH for k=1.

  ・Minkowski branch, negative mass:

　　There is one CEH for k=-1.

  ・adS branch, positive mass:

　　There are at least 2 horizons for k=-1.

  ・adS branch, positive mass:

　　There is at least 1 horizon for k=-1.

k̃

Curvature corrections to M-theory 
consist  of Lovelock part and other 
terms which gives higher derivative 
equation of motion. Here we consider 
only the Lovelock part.



NARIAI & BERTOTTI-ROBINSON 
SOLUTION

❖ gravitational equation
R(r) ≡ B

2 = const.

δ ≡ 0 (gauge)

x

x

x
x

B̃
2

V (B̃2)

−α0

B̃
2

1 B̃
2

2 B̃
2

3 B̃
2

4B̃
2

5f = 1 − ζir
2

V (B̃2) :=
N∑

p=1

αp(kB̃
2)p = −α0

ζi := −

∑N
p=0

αp(n − 2)2p+2(kB̃−2
i )p

∑N
p=0

αp(n − 2)2p(kB̃−2
i )p−1

B̃ := B
−1

(n − p)q = (n − p)(n − p − 1) · · · (n − q)

In general, there are up 
to N solutions, The sign 
of zeta_i changes at the 
extremum points of V.



❖ Example 1: general relativity
αo != 0, α1 > 0

f = 1 +
2αo

(n − 2)α1

r2

B
2

= −

α1

α0

k α0k < 0

k=1 and positive c.c. : 

     Nariai

k=-1 and negative c.c. : 

     anti-Nariai

(dS2 × Sn−2)

(adS2 × Hn−2)

B̃
2

V (B̃2)

−α0

k = 1

k = −1

Nariai

anti-Nariai



❖ Example 2: Gauss-Bonnet gravity
αo != 0, α1, α2 > 0

V (B̃2) = α1kB̃
2 + α2B̃

4

B̃
2

V (B̃2)

−α0

k = 1

k = −1

Nariai

anti-Nariai

adS Bertotti-Robinson

Plebanski-Hacyan

◆ Bertotti-Robinson solution exist

    for k=-1 case.

◆ These solution corresponds to 

    extreme black hole solutions in the 

    same system. There are certain 

    coordinate transformation from 

    them.
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