
 

 

 

 

 

 

 

RESCEU SYMPOSIUM ON 

GENERAL RELATIVITY AND GRAVITATION 

JGRG 22 

November 12-16 2012 

Koshiba Hall, The University of Tokyo, Hongo, Tokyo, Japan 

Hideyoshi Arakida, JGRG 22(2012)111328 

“Effect of the cosmological constant on the bending of light and 

the cosmological lens equation” 

 



H. Arakida & M. Kasai 1

Effect of the cosmological constant on the bending of light
and the cosmological lens equation

Hideyoshi Arakida1(a), Masumi Kasai(b)

(a)Graduate School of Education, Iwate University
(b)Graduate School of Science and Technology, Hirosaki University

Abstract
We revisit the effect of cosmological constant Λ on the light deflection and its role
in the cosmological lens equation. First, we re-examine the motion of photon in
the Schwarzschild spacetime, and explicitly describe the trajectory of photon and
deflection angle α up to the second-order in G. Then the discussion is extended
to the contribution of the cosmological constant Λ in the Schwarzschild-de Sitter or
Kottler spacetime. Contrary to the previous arguments, we emphasize the following
points: (a) the cosmological constant Λ does appear in the orbital equation of light,
(b) nevertheless the bending angle of light α does not change its form even if Λ ̸= 0
since the contribution of Λ is thoroughly absorbed into the definition of the impact
parameter, and (c) the effect of Λ is completely involved in the angular diameter
distance DA.

1 Introduction

Nowadays, it is widely regarded that the cosmological constant Λ or more generally dark energy is the
most responsible candidate which explains accelerating expansion of Universe. Nonetheless the details
of cosmological constant Λ or dark energy are still far from clear, then it is preferable and worthy to
clarify the validity of this hypothesis by means of not only cosmological observations but also another
astronomical/astrophysical ones.

Among such attempts, it would be the most natural idea to investigate the role of cosmological
constant Λ in the classical tests of general relativity, e.g. the perihelion advance of planetary orbit and
the bending of light path. So far, it was shown that the cosmological constant Λ causes the perihelion
shift of planets at least in principle, even though its contribution is too small to detect in the current
measurement technique (see [1, 2, 3] and the references therein).

While it has been believed for a long time that Λ does not contribute to the light deflection because
there is no Λ in the second-order ordinary differential equation (ODE) of photon. However recently,
Rindler and Ishak [4] pointed out that Λ does affect the bending angle by using the Schwarzschild-de
Sitter or Kottler metric and the invariant formula of cosine. Subsequently many authors argued its
appearance in diverse ways and generality assisted the fact that there appears Λ in the deflection angle
α, see [5] for review and the references therein and also [6, 7, 8, 9, 10, 11, 12]. However, it seems that the
conclusion has not converged yet; for instance whether the leading order effect of Λ is coupled with the
mass of central body M or not and so on. In order to clear up the confusion, we will revisit the effect of
the cosmological constant on the light deflection and its role in the cosmological lens equation.

2 Photon trajectory in Schwarzschild spacetime

Before discussing the influence of Λ on bending angle α, we shall begin with re-considering the solution
of photon trajectory in the Schwarzschild spacetime. From the Schwarzschild metric in the Schwarzschild
coordinates,

ds2 = −
(
1− rg

r

)
c2dt2 +

(
1− rg

r

)−1

dr2 + r2(dθ2 + sin2 θdϕ2), rg =
2GM

c2
, (1)
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and the condition for null geodesic ds2 = 0, we have the geodesic equation for equatorial plane (θ = π/2),(
du

dϕ

)2

=
1

b2
− u2 + rgu

3, u ≡ 1

r
,

1

b2
≡ E2

c2L2
, (2)

in which the two constants of motion, E and L are total energy and angular momentum, respectively.
Alternatively, Eq. (2) can be expressed in the form of second-order ODE as,

d2u

dϕ2
= −u+

3

2
rgu

2, (3)

nevertheless, hereinafter we use Eq. (2) instead of Eq. (3).
In order to obtain the photon trajectory up to the second-order in G, let us put the solution of Eq. (2)

u as,

u =
1

b

(
sinϕ+ rgu1 + r2gu2

)
, (4)

where u1 and u2 are, respectively, first O(G) and second O(G2) order correction to zeroth-order solution
u0 = sinϕ/b (straight line). Hence u1 and u2 satisfy the following differential equations,

du1

dϕ
= − sinϕ

cosϕ
u1 +

1

2b

sin3 ϕ

cosϕ
, (5)

du2

dϕ
= − sinϕ

cosϕ
u2 −

1

2 cosϕ

[(
du1

dϕ

)2

+ u2
1 −

3

b
u1 sin

2 ϕ

]
. (6)

Noting that the integration constants of Eqs. (5) and (6) are chosen such that maximizing u (or minimizing
r) for ϕ = π/2, then we obtain the trajectory of photon up to the second-order in G as,

1

r
=

1

b
sinϕ+

rg
4b2

(3 + cos 2ϕ) +
r2g
64b3

(
37 sinϕ+ 30 (π − 2ϕ) cosϕ− 3 sin 3ϕ

)
, (7)

where b is the impact parameter which represents the minimum value of r-coordinate for the undeflected
light ray, i.e., rg = 0. The bending angle α is shortly derived from Eq. (7) and it coincides with the
famous formula by [13],

α = 2
rg
b

+
15π

16

(rg
b

)2

=
4GM

c2b
+

15π

4

(GM)2

c4b2
+O(G3). (8)

It should be mentioned about the validity of the solution for light trajectory. The appropriateness of our
solution, Eq. (7) can be verified readily by the direct substitution into Eq. (2) and it is found that the
residual terms are order O(G3), then it is perfectly valid up to the order of G2. However, the photon
trajectory given in previous works such as Eq. (18) of [14] and Eq. (16) of [5] are incorrect; in fact, there
appears O(G2) order residual term in the solution of photon trajectory in [5, 14].

3 Contribution of the cosmological constant

Now, let us investigate the contribution of Λ on light ray. For this purpose, we adopt the Schwarzschild-de
Sitter or Kottler metric [15],

ds2 = −
(
1− rg

r
− Λ

3
r2
)
c2dt2 +

(
1− rg

r
− Λ

3
r2
)−1

dr2 + r2(dθ2 + sin2 θdϕ2). (9)

In the same way as the Schwarzschild case, the differential equation of light is given by(
du

dϕ

)2

=
1

b2
− u2 + rgu

3 +
Λ

3
. (10)
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It should be emphasized here that the geodesic equation of light Eq. (10) does obviously include Λ.
Therefore, previous arguments, such as “Λ does not appear in the geodesic equation of light”, would
be overstated. Actually, the second-order ODE derived from Eq. (10) reduces to Eq. (3), nevertheless
its solution of light trajectory should be obtained in such a way that the integration constants satisfy
Eq. (10).

Furthermore, the impact parameter is the minimum value of the coordinate r if the light ray were
undeflected, i.e., rg = 0. It is obvious from Eq. (10) that the impact parameter B in this case is defined
by

1

B2
≡ 1

b2
+

Λ

3
. (11)

Then, the form of Eq. (10) completely coincides with Eq. (2), except that the impact parameter b is
replaced by B. Therefore, the solution of Eq. (10) becomes,

1

r
=

1

B
sinϕ+

rg
4B2

(3 + cos 2ϕ) +
r2g

64B3

(
37 sinϕ+ 30(π − 2ϕ) cosϕ− 3 sin 3ϕ

)
, (12)

and deflection angle is,

α = 2
rg
B

+
15π

16

(rg
B

)2

=
4GM

c2B
+

15π

4

(GM)2

c4B2
+O(G3). (13)

It is worthy to note that the contribution of Λ is incorporated in Eqs. (12) and (13) through Eq. (11). As
a consequence, it is found that the cosmological constant Λ does appears in both the geodesic equation
and its solution, that is the trajectory of photon. However, the effect of Λ is completely absorbed into
the definition of the the impact parameter (see Eq. (11)). Hence it is difficult to distinguish the influence
of Λ from the observed deflection angle.

When we expand Eq. (13) by using 1/B = (1/b)
√

1 + Λb2/3 ≃ (1/b)(1+Λb2/6) and remainO(M,MΛ)
terms, it follows that

α ≃ 4GM

c2b
+

2GMbΛ

3c2
, (14)

in which second term coincides with the previous results, e.g. Eq. (5) and below in [16] and the third
term of Eq. (15) in [10]. Hence it is found that these results are included in Eq. (13) as a limiting case.

It is clear that the trajectory of photon Eq. (12) strictly satisfies Eq. (10) up to the second-order in
G based on the result in previous section.

4 Cosmological lens equation

Finally, we consider the contribution of Λ in the cosmological lens equation. Under the assumption that
the thin lens approximation is valid, the lens equation relates the observed image position angle θ to the
unlensed position angle β of the source as

β = θ − DA(zL, zS)

DA(0, zS)
α, (15)

where DA(z1, z2) denotes the angular diameter distance from the redshift z1 to z2, and the arguments
zL and zS are the redshift of the lens and the source, rwespectively. For the distance formula DA in the
unperturbed Friedmann-Lemâıtre-Robertson-Walker (FLRW) universe with Λ, see, e.g., [17].

Up to the first order in G, the bending angle α in the present case is

α =
4GM

c2B
. (16)

The impact parameter B is related to the image position angle θ by

B = DA(0, zL)θ. (17)
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Then, from Eqs. (15), (16), and (17), the lens equation is finally

β = θ − 4GMDA(zL, zS)

c2DA(0, zL)DA(0, zS)

1

θ
. (18)

Therefore, the contribution of Λ is completely involved in the form of the angular diameter distance DA.
No modifications due to Λ appear even if the term of O(G2) in α is included. It should also be noted
that Eq. (18) is exactly the same form appeared in [17, 18], where the authors have shown that the
gravitational lensing effects are strongly dependent on the value of the cosmological constant and hence
they provide us with useful means to test the cosmological constant.

Here, we mention that in paper [16], Sereno introduced the relation, b0 = Ddϑ (see Eq. (8) below of
[16]) where b0 is the impact factor of “Schwarzschild lens” (see Eq. (8) of [16]), Dd is the angular-diameter
distance, and ϑ is the angular separation. Since in the case of cosmological lens, the cosmological distance,
such as the angular diameter distance, is defined with Λ, then b0 should be replaced by B, instead.
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