

Yasumichi Sano, JGRG 22(2012)111327

"Gravitational field of a rotating ring around a Schwarzschild black hole"

RESCEU SYMPOSIUM ON GENERAL RELATIVITY AND GRAVITATION

JGRG 22

November 12-16 2012

Koshiba Hall, The University of Tokyo, Hongo, Tokyo, Japan

GRAVITATIONAL FIELD OF A ROTATING RING

AROUND A SCHWARZSCHILD BLACK HOLE

~ Using Hertz Potential ~

Yasumichi SANO, Hideyuki TAGOSHI (Osaka University)

We calculated the perturbed space time metric of a Schwarzschild black hole (BH) and a rotating mass ring using Teukolsky equation and CCK (Chrzanowski, Cohen & Kegeles) formalism. We also visualized the result with tendex line and vortex line.

Introduction <

P19

- Black hole perturbation (1st order)
 - mass ratio (source/BH) as the small parameter

 $g_{\alpha\beta} = g_{\alpha\beta}^{(0)} + h_{\alpha\beta}$ BH metric 1

- "Black hole + moving point mass" perturbed metric
 - → Self-force, gravitational wave
 - \Box For Kerr BH, it is very difficult to calculate $h_{\alpha\beta}$
- Illuminating the method available with Kerr spacetime

Setting

- Schwarzschild black hole + Rotating circular ring
 - Ring: a set of point particles in circular geodetic motion
 - ☐ Axisymmetric & steady problem
- Energy-momentum tensor of the ring +

radius

- rest mass

four velocity $T^{lphaeta}=rac{mu^{lpha}u^{eta}}{u^{t}r_{0}{}^{2}}\delta(r-r_{0})\delta(\cos\theta)$

Method

Finding $h_{\alpha\beta}$ via Hertz potential Ψ

- Weyl scalar: Components of the Weyl tensor
 - \Box 5 complex components (ψ_0 , ψ_1 , ψ_2 , ψ_3 , ψ_4)
- CCK: Chrzanowski ('75), Cohen & Kegeles ('79) In "Radiation gauge", the perturbation $h_{\alpha\beta}$ is given by 2nd order partial derivative of Hertz potential
 - ☐ Hertz potential satisfies source free Teukolsky Eq.

Hertz potential $\Psi = \Psi_{\rm P} + \Psi_{\rm H}$

- \blacksquare Assuming Hertz potential in the same mode expansion as Weyl scalar ($l \ge 2$),
 - Eq. (2) reduces to algebraic Eq. \Rightarrow The particular solution Ψ_{P} obtained easily
- \square HOWEVER, Ψ_{P} gives singular Weyl tensor field, that is not continuous at the ring radius
- \blacksquare Determination of the Homogeneous solution Ψ_{H}
 - \Box Some of degrees of freedom in Ψ_H are physical parameters (mass and angular momentum)

(l = 0, 1 mode)

⇒ By computing the mass and angular momentum, one can determine those parameters

$$M_{\rm ring} = -2\pi m u_{\alpha} \xi^{\alpha}$$

$$J_{\rm ring} = 2\pi m u_{\alpha} \psi^{\alpha}$$

$$M_{
m ring} = -2\pi m u_lpha \xi^lpha$$
 $J_{
m ring} = 2\pi m u_lpha \psi^lpha$ $\xi^lpha = \left(rac{\partial}{\partial t}
ight)^lpha = \left(rac{\partial}{\partial \phi}
ight)^lpha$: Killing vectors

- \Box J_{ring} completed the imaginary parts of all Weyl scalars, cancelling the discontinuities
- \square M_{ring} , on the other hand, unexpectedly not cancelled the discontinuities of real parts of Weyl scalars

Visualizing (vortex line)

- A tensor representing frame-dragging effect
 - lacksquare Weyl tensor $m{C}_{lphaeta\gamma\delta}$ projected $m{\mathcal{B}}_{\hat{i}\hat{j}} = -rac{1}{2}\epsilon_{\hat{i}\hat{p}\hat{q}}C_{\hat{0}\hat{j}}{}^{\hat{p}\hat{q}}$ onto a 3 dimensional space
- Draw integral curves of the eigen vector field
- Ex. 1: Kerr BH
 - ☐ Outward curves in polar region
- Ex. 2: Line mass flow
 - ☐ Spiral around the (See only blue or red)

1: BH's angular

Result with only particular solution

Not continuous at the ring radius Outward curves upside down in color

With angular momentum

Spiral pattern around the ring Continuous and interpretable