Takao Kitamura, JGRG 22(2012)111325

"Gravitational lensing by modified lens gravity"

RESCEU SYMPOSIUM ON

GENERAL RELATIVITY AND GRAVITATION

November 12-16 2012
Koshiba Hall, The University of Tokyo, Hongo, Tokyo, Japan

Gravitational lensing by modified lens gravity

Takao Kitamura

Hirosaki University, Japan with H. Asada (Hirosaki), K. Nakajima (Hirosaki)

HIROSAKI UNIVERSITY

JGRG22 in Tokyo Nov. 12-16, 2021
Abstract: IS DEMAGNIFICATION AN EVIDENCE FOR WORMHOLES ??

1 Deflection angle of light in the modified spacetime metric (inverce power form)

In weak field limit, We consider a modified space-time metric as

$$
\begin{equation*}
d s^{2}=-\left(1-\frac{\varepsilon_{1}}{r^{n}}\right) d t^{2}+\left(1+\frac{\varepsilon_{2}}{r^{n}}\right) d r^{2}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi\right) \tag{1}
\end{equation*}
$$

This metric is rewritten up to $O(\varepsilon)$ by comformal transformation as

$$
\begin{equation*}
d s^{2}=\left(\frac{1}{1-\frac{\varepsilon_{1}}{r^{n}}}\right) \tilde{d}^{2} \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
\tilde{d s}^{2} \approx-d t^{2}+\left(1+\frac{\varepsilon}{R^{n}}\right) d R^{2}+R^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right) \tag{3}
\end{equation*}
$$

with $R \equiv r^{2} /\left(1-\frac{\varepsilon_{1}}{r^{n}}\right)$ and $\varepsilon \equiv n \varepsilon_{1}+\varepsilon_{2}$. We derivated deflection angle of light in this space-time as with method of schwartzchild case.

Derivated deflection angle is

$$
\begin{equation*}
\alpha=\frac{\varepsilon}{b^{n}} \cdot \int_{0}^{\frac{\pi}{2}} \cos ^{n} \theta d \theta \tag{4}
\end{equation*}
$$

Especially, Equation (4) is rewritten as

$$
\begin{align*}
& \alpha=\frac{\varepsilon}{b^{n}} \cdot \frac{(n-1)!!}{n!!} \frac{\pi}{2} \quad(\mathrm{n} \text { is even) } \tag{5}\\
& \alpha=\frac{\varepsilon}{b^{n}} \cdot \frac{(n-1)!!}{n!!} \quad(\mathrm{n} \text { is odd) } \tag{6}
\end{align*}
$$

b is impact parameter.
The Equation (4) coinside with schwarzschild case with $n=1$ and Ellis wormhole case with $n=2$.

2 Modified lens equation

D_{S}

Lens equation for modified space-time is

$$
\begin{align*}
& \beta=\theta-\frac{1}{\theta^{n}} \quad(\theta>0) \tag{7}\\
& \beta=\theta+\frac{1}{(-\theta)^{n}} \quad(\theta<0) \tag{8}
\end{align*}
$$

in the units of $\theta_{E}=\varepsilon^{\frac{1}{n+1}}$ that is Einstein ring radius with $\beta=0$. We call this equation as Modified lens equation.
We want to obtain analytical solution for modified lens equations. But no fomula of solution for fifth-order(or higher) equation. Therefore, we solve it using asymptotic expansion.

Then we consider source object pass through nearzone in proportion with Einstein ring radius $\left(\beta \ll\left|\theta_{E}\right|\right)$.For $\beta<1$, Equation $[7,8]$ are iteratively solved as

$$
\begin{align*}
& \theta_{+}=1+\frac{1}{n+1} \beta+\frac{1}{2} \frac{n}{(n+1)^{2}} \beta^{2} \quad(\theta>0) \tag{9}\\
& \theta_{-}=-1+\frac{1}{n+1} \beta-\frac{1}{2} \frac{n}{(n+1)^{2}} \beta^{2} \quad(\theta<0) . \tag{10}
\end{align*}
$$

3 Approximate prediction for amplification

Total amplification is

$$
\begin{equation*}
A \equiv\left|\frac{\theta_{+}}{\beta} \frac{d \theta_{+}}{d \beta}\right|+\left|\frac{\theta_{-}}{\beta} \frac{d \theta_{-}}{d \beta}\right| . \tag{11}
\end{equation*}
$$

substitute Equations [9,10] in Equation (11):

$$
\begin{equation*}
A=\frac{1}{n+1} \frac{2}{\beta} \tag{12}
\end{equation*}
$$

Thus, magnifying condition $(A>1)$ is rewritten as

$$
\begin{equation*}
\frac{2}{n+1}>\beta \tag{13}
\end{equation*}
$$

The meaning of Equation (13) is changing from magnification to demagnification with $\beta=2 /(n+1)$.
e.g. $n=10, \beta=0.182$

4 Light curve by numerical calculations

Blue line is light curve, and Red line is the brightness of source. β_{0} is the closest position from lens to source in units of θ_{E}.
Demagnified by $10 \%, 60 \%$ from source brightness with $n=3, n=$ 10. The second figure shows β in the point which changes from magnification to demagnification is 0.187 , this value is close to value of approximate prediction for foregoing section.

5 Conclusion

- We obtained light curve for modified space-time metric
- Demagnification is an evidance EWH. But not always prove it !!

Future work...

- Applying to modified gravity and exotic matter
- Mechanism of demagnification

References

[1] Fumio Abe 2010 ApJ 725787.
[2] Y.Toki, T.Kitamura, H.Asada, F.Abe 2011 ApJ 740121
[3] K. Nakajima, H. Asada 2011 Phys. Rev. D 85, 107501
[4] T.kitamura, K. Nakajima H. Asada arxiv
[5] Tsukamoto sann arxiv

