"Ghost in multimetric gravity"

RESCEU SYMPOSIUM ON

GENERAL RELATIVITY AND GRAVITATION

JGRG 22

November 12-16 2012
Koshiba Hall, The University of Tokyo, Hongo, Tokyo, Japan

Ghost in
 Multimetric Gravity

Kyoto University
Kouichi Nomura, Jiro Soda

Phys. Rev. D86, 084052 (2012)

1. Introduction

Recently, the ghost problem in non-linear massive gravity has been solved.

Massive gravity : a challenge to give mass to graviton in general relativity
linear level : Pauli-Fiertz mass term • . . no problem non linear level : a serious difficulty emerges
graviton has spin 2 - . . mssless : 2 degrees of freedom massive : 5 degrees of freedom

In linear level, there are certainly 5 degrees of freedom.
However, in non-linear level, extra $6^{\text {th }}$ degree of freedom emerges and turns out to be a ghost particle.
ghost particle : a particle having negative kinetic energy
For the consistency of the theory, ghost particles must be excluded.

Extension to bimetric gravity

In non-linear massive gravity, metric is always decomposed into backgroundand and fluctuation.
The background metric can be promoted to a dynamical variable.
a theory of two dynamical metrics
It has been shown that no $B D$ ghost is contained.

Question

Can we construct ghost-free theories with more than two metrics?

(1) : Trimetric case as a naïve extension of bimetric gravity is proposed. (2012, N. Khosravi et al)

The problem of BD ghost is unsolved.
(2) : Ghost-free multimetric gravity with vielbeins is proposed. (2012, K. Hinterbichler and R. A. Rosen)

We solve the ghost problem in (1), and further develop our analysis to more general multimetric gravity.

2. Bimetric gravity g, f : metric

$$
\begin{array}{rl|l}
S_{b i}= & M_{g}^{2} \int d^{4} x \sqrt{-\operatorname{det} g} R[g]+M_{f}^{2} \int d^{4} x \sqrt{-\operatorname{det} f} R[f] & \begin{array}{c}
\text { Einstein Hilbert term } \\
\\
\\
\\
\\
\end{array}+a \int d^{4} x \sqrt{-\operatorname{det} g} \Phi\left(\sqrt{g^{-1} f}\right)
\end{array}
$$

M_{g}, M_{f} : Planck mass, $\quad R[g], R[f]$: curvature , a : coupling constant $\Phi(A)$: linear combination of $\operatorname{Tr}(A),(\operatorname{Tr} A)^{2}-\operatorname{Tr}\left(A^{2}\right), \ldots$.
(up to fourth order in A)
No BD-ghost is contained, and there exist one massless and one massive graviton.

3. Trimetric gravity g, f, h : metric

$$
\begin{aligned}
S_{r i i}= & M_{g}^{2} \int d^{4} x \sqrt{-\operatorname{det} g} R[g]+M_{f}^{2} \int d^{4} x \sqrt{-\operatorname{det} f} R[f]+M_{h}^{2} \int d^{4} x \sqrt{-\operatorname{det} h} R[h] \\
& +a_{1} \int \sqrt{-\operatorname{det} g} \Phi_{1}\left(\sqrt{g^{-1} f}\right)+a_{2} \int \sqrt{-\operatorname{det} f} \Phi_{2}\left(\sqrt{f^{-1} h}\right)+a_{3} \int \sqrt{-\operatorname{det} h} \Phi_{3}\left(\sqrt{h^{-1} g}\right)
\end{aligned}
$$

a nive extension of bimetric case
In this case, we verified the exsistence of a BD-ghost.

cutting one of interactions
Ghost-freedom is already shown in the vielbein formalism.

We perform the Hamiltonian analysis in homogeneous model.

$$
\begin{aligned}
& g_{\mu \nu} d x^{\mu} d x^{\nu}=-N(t)^{2} d t^{2}+\gamma(t)_{i j} d x^{i} d x^{j} \\
& f_{\mu \nu} d x^{\mu} d x^{\nu}=-L(t)^{2} d t^{2}+\omega(t)_{i j} d x^{i} d x^{j} \\
& h_{\mu \nu} d x^{\mu} d x^{\nu}=-Q(t)^{2} d t^{2}+\rho(t)_{i j} d x^{i} d x^{j}
\end{aligned}
$$

One of the metrics can be diagonalized through spacial rotations.

$$
\text { Hamiltonian : } H=N C_{N}+L C_{L}+Q C_{Q}
$$

N, L, Q : Laglange multipliers
Constraints: $C_{N}=0, C_{L}=0, C_{Q}=0$
Degrees of freedom : $3+6+6=15$

Constraints must be preserved in the time evolution.

$$
\begin{aligned}
& \dot{C}_{N}=\left\{C_{N}, H\right\}=\left\{C_{N}, C_{L}\right\} L+\left\{C_{N}, C_{Q}\right\} Q \approx 0 \\
& \dot{C}_{L}=\left\{C_{L}, H\right\}=\left\{C_{L}, C_{N}\right\} N+\left\{C_{L}, C_{Q}\right\} Q \approx 0 \\
& \dot{C}_{Q}=\left\{C_{Q}, H\right\}=\left\{C_{Q}, C_{N}\right\} N+\left\{C_{Q}, C_{L}\right\} L \approx 0
\end{aligned}
$$

$$
\left\{C_{N}, C_{L}\right\} \propto a_{1}, \quad\left\{C_{L}, C_{Q}\right\} \propto a_{2}, \quad\left\{C_{N}, C_{Q}\right\} \propto a_{3}
$$

$$
\left(\begin{array}{ccc}
0 & a_{1} & a_{3} \\
-a_{1} & 0 & a_{2} \\
-a_{3} & -a_{2} & 0
\end{array}\right)\left(\begin{array}{l}
N \\
L \\
Q
\end{array}\right)=0 \quad \begin{aligned}
& \text { We must determine the Lagrange multipliers } \\
& \text { to satisfy this condition. }
\end{aligned}
$$

Case 1:

Secondary Constraints $\quad a_{1} \propto\left\{C_{N}, C_{L}\right\} \approx 0, \quad a_{3} \propto\left\{C_{N}, C_{Q}\right\} \approx 0$
consistency in the time evolution $d\left\{C_{N}, C_{L}\right\} / d t=N C_{N L, N}+L C_{N L, L}+Q C_{N L, Q} \approx 0$ $d\left\{C_{N}, C_{Q}\right\} / d t=N C_{N Q, N}+L C_{N Q, L}+Q C_{N Q, Q} \approx 0$

- One of the Lagrange multipliers is left undetermined. (one gauge freedom)
- The total number of constraints is five.

Total degrees of freedom : $(15 \times 2-5-1) / 2=12\left\{\begin{array}{l}\text { Masless graviton : } 1 \\ \text { Massive graviton : } 2 \\ \text { BD ghost : } 0\end{array}\right.$

Case 2:

$$
\left(\begin{array}{ccc}
0 & a_{1} & a_{3} \\
-a_{1} & 0 & a_{2} \\
-a_{3} & -a_{2} & 0
\end{array}\right)\left(\begin{array}{l}
N \\
L \\
Q
\end{array}\right)=0
$$

No seconday constraint

$$
N=\frac{a_{2}}{a_{1}} Q, \quad L=-\frac{a_{3}}{a_{1}} Q, \quad Q: \text { arbitrary }
$$

Constraints : 3 Gauge freedom : 1

Total degrees of freedom : $(15 \times 2-3-1) / 2=13\left\{\begin{array}{l}\text { Masless graviton : } 1 \\ \text { Massive graviton : } 2 \\ \text { BD ghost : } 1\end{array}\right.$
4. More general Multimetric gravity $g_{1}, g_{2}, \ldots, g_{n}$: metrics

$$
S_{n}=\sum_{k=1}^{n} M_{k}^{2} \int d^{4} x \sqrt{-\operatorname{det} g_{k}} R\left[g_{k}\right]+\sum_{k=1}^{n} a_{k} \int d^{4} x \sqrt{-\operatorname{det} g_{k}} \Phi_{k}\left(\sqrt{g_{k}^{-1} g_{k+1}}\right)
$$

5. summary

- We showed that there exists a BD-ghost in the trimetric gravity as a naive extension of the recently proposed ghost-free bimetric gravity.
- We also studied more general multi metric gravity, and showed there always exist BD-ghosts if loop type interactions are contained.

