

Ken'ichi Saikawa, JGRG 22(2012)111321

"Evolution and thermalization of axion dark matter in the

condensed regime"

RESCEU SYMPOSIUM ON

GENERAL RELATIVITY AND GRAVITATION

JGRG 22

November 12-16 2012

Koshiba Hall, The University of Tokyo, Hongo, Tokyo, Japan

Evolution and thermalization of axion dark matter in the condensed regime

Ken'ichi Saikawa ICRR, The University of Tokyo

Collaborate with M.Yamaguchi (Tokyo Institute of Technology)

Reference: KS and M.Yamaguchi, arXiv:1210.7080 [hep-ph]

Abstract

- Discuss the possibility that QCD axions form a Bose-Einstein condensate (BEC)
- Calculate time evolution of occupation number of axions in the condensed regime
 - Derive a formula for thermalization rate
 - Revisit axion cosmology

Peculiarities of axion dark matter• Non-thermal production
$$H \leq m_a$$
 $(t = t_1)$ ψ $t_1 \sim 10^{-7} \sec$ $\psi \sim \frac{\delta p}{m_a} \sim \frac{R(t_1)}{R(t_0)} \frac{1}{m_a t_1} \sim 3 \times 10^{-17} \left(\frac{F_a}{10^{12} \text{GeV}}\right)^{0.81}$
"cold" dark matter ($\delta v < 10^{-8}$)• Large occupation number $\mathcal{N} \sim n_a \frac{(2\pi)^3}{4\pi (m_a \delta v)^3} \sim 10^{61} \left(\frac{F_a}{10^{12} \text{GeV}}\right)^{2.75}$
 $(n_a \sim m_a F_a^2(R(t_1)/R(t_0))^3$: number density of axions)
 $c.f. \quad \mathcal{N} \sim 10^{-18} \left(\frac{100 \text{GeV}}{m_{\text{wimp}}}\right)^4$ for WIMPs

Do axions form a BEC ?

- Bose-Einstein condensate
 - Large fraction of bosons are in the lowestenergy state
 - Critical temperature

Assı

$$T_{c} = \left(\frac{\pi^{2}n_{a}}{\zeta(3)}\right)^{1/3} \simeq 2 \times 10^{2} \text{GeV} \left(\frac{F_{a}}{10^{12} \text{GeV}}\right)^{0.54} \left(\frac{R(t_{1})}{R(t)}\right)$$

$$\stackrel{!}{\gg} \delta \omega \sim \frac{1}{2} m_{a} (\delta v)^{2} \sim 4 \times 10^{-13} \text{eV} \left(\frac{F_{a}}{10^{12} \text{GeV}}\right)^{0.25} \left(\frac{R(t_{1})}{R(t)}\right)^{2}$$

$$\text{Imptions}$$
For axions

I. Particles are bosons satisfied
2. Number is conserved satisfied
3. Large occupation number satisfied
4. In thermal equilibrium ???

Axions vs WIMPs

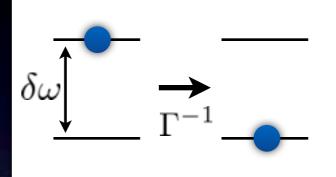
- Thermalize if $\Gamma \sim \dot{\mathcal{N}}(p) / \mathcal{N}(p) > H$
- WIMPs : classical particle limit

 $\hbar \to 0$ while $E = \hbar \omega$, $\vec{p} = \hbar \vec{k}$ fixed $\omega, \vec{k} \to \infty$ collection of classical "point particles" evolution : use Boltzmann eq.

axions : classical field limit
 ħ→ 0 while E = Nħω, p = Nħk fixed
 N→∞ δω, δk ~ finite "wavy field"
 cannot use Boltzmann eq.
 → consider quantum mechanics

In quantum mechanics...

- We consider transitions between different quantum states.
- Two different regimes
- WIMPs $\omega \rightarrow large$



energy exchanged in the transitions transition rate "particle kinetic regime"

• axions $\omega \to \text{small}$ $\delta \omega \ll$

"condensed regime"

A transition makes sense if $\ \ensuremath{\mathcal{N}} \delta \omega \gg \Gamma$

Previous study

Erken, Sikivie, Tam, Yang, PRD85, 063520 (2012)

Time evolution of quantum operators in the Heisenberg picture l: label of the state (momentum)

What about the quantum-mechanical averages $\langle \mathcal{N}_l(t) \rangle$?

reduce to Bo

Effects on cosmological parameters ?

- Thermalization rate is enhanced in the condensed regime → leads to axion BEC
- Thermalization rate with other species is also enhanced (?) Erken, Sikivie, Tam, Yang, PRD85, 063520 (2012); PRL108, 061304 (2012)
 - axions and photons have thermal contact

$$\rho_{\gamma i} = \frac{\pi^2}{15} T_{\gamma i}^4 = \rho_{\gamma f} + \rho_{af} = \frac{\pi^2}{30} T_{\gamma f}^4 (2+1)$$

 $T_{\gamma f} = (2/3)^{1/4} T_{\gamma i}$

baryon-to-photon ratio at BBN $\eta_{\rm BBN} = (2/3)^{3/4} \eta_{\rm std.}$

effective # of neutrino d.o.f. $\,N_{
m eff}=6.77$ (o

(obs. $N_{
m eff}\simeq 3-4$)

Is it true ? Does axion BEC conflict with standard cosmology?

In-in formalism

Weinberg, PRD72, 043514 (2005)

 Calculate expectation value of a quantum operator via perturbative expansion

November 12-16, 2012, JGRG22 (RESCEU, Univ. of Tokyo)

(I) se

(2) g

In state

- $|in\rangle$ = a state which represents the coherent oscillation of axions
- Use a coherent state

$$|lpha_i
angle = e^{-rac{1}{2}|lpha_i|^2} \sum_{n=0}^{\infty} rac{lpha_i^n}{n!\sqrt{V^n}} (a_i^{\dagger})^n |0
angle \qquad ext{with} \quad a_i |0
angle = 0$$

$$a_i |\alpha_i\rangle = V^{1/2} \alpha_i |\alpha_i\rangle$$

• Field amplitude

(assuming a mode with $|\mathbf{p}_n| \lesssim H \sim t^{-1}$)

$$\phi = \frac{1}{V} \sum_{n} \frac{1}{\sqrt{2E_{p_n}}} (e^{ip_n \cdot x} a_n + e^{-ip_n \cdot x} a_n^{\mathsf{T}})$$

$$\langle \alpha_i | \phi | \alpha_i \rangle \simeq \frac{1}{\sqrt{2m_a V}} (e^{-im_a t} \alpha_n + e^{im_a t} \alpha_n^*) = \sqrt{\frac{2}{m_a V}} |\alpha_n| \cos(m_a t - \beta)$$

(inside the horizon $\mathbf{p}_n \cdot \mathbf{x} \ll 1$)

classical field trajectory

Mean square deviation

$$\Delta \phi = \sqrt{\langle lpha_i | \phi^2 | lpha_i
angle - \langle lpha_i | \phi | lpha_i
angle^2} = \sqrt{rac{1}{V} \sum_n rac{1}{2E_n}}$$
 vacuum fluctuation

"Zero modes"

• Assume plural (say K) oscillating modes

 $|\{\alpha\}\rangle = \prod_{i}^{K} e^{-\frac{1}{2}|\alpha_{i}|^{2}} \sum_{n=0}^{\infty} \frac{\alpha_{i}^{n}}{n!\sqrt{V^{n}}} (a_{i}^{\dagger})^{n} |0\rangle \qquad \qquad |\mathbf{p}_{i}| \lesssim H(t_{1}) \sim m_{a}(t_{1})$ for $i = 1, \dots, K$

number density

$$n_a = \frac{1}{V} \sum_n \langle \{\alpha\} | \mathcal{N}_n | \{\alpha\} \rangle = \frac{1}{V} \sum_i^K |\alpha_i|^2 \equiv \sum_i^K n_{c,i}$$

- Question : how these plural oscillating modes ("zero modes") reach thermal equilibrium ?
 - decoupled axions
 = each of K modes oscillates independently
 - thermalized axions
 = transition between plural modes becomes significant

Evolution of occupation number

$$\langle \operatorname{in}|\mathcal{N}_p(t)|\operatorname{in}\rangle = \langle \mathcal{N}_p\rangle + i \int_{t_0}^t \langle [H_I(t_1), \mathcal{N}_p]\rangle + \mathcal{O}(H_I^2) + \dots$$

$$i \int_{t_0}^t dt_1 \langle [H_I(t_1), \mathcal{N}_p] \rangle \xrightarrow{t-t_0 \to \infty} -\frac{1}{2V^2} \sum_j^K \sum_k^K \sum_l^K \sum_l^K \left[\Lambda_{kl}^{pj} \frac{e^{-i\Omega_{kl}^{pj}t}}{\Omega_{kl}^{pj}} \alpha_k^* \alpha_l^* \alpha_j \alpha_p + \text{c.c.} \right]$$

for
$$|\mathrm{in}\rangle = \prod_{i}^{K} e^{-\frac{1}{2}|\alpha_{i}|^{2}} \sum_{n=0}^{\infty} \frac{\alpha_{i}^{n}}{n!\sqrt{V^{n}}} (a_{i}^{\dagger})^{n} |0\rangle$$

coherent state

 $i\int_{t_0}^t dt_1 \langle [H_I(t_1), \mathcal{N}_p] \rangle = 0 \quad \text{ for } \quad |\text{in}\rangle = \prod_k \frac{1}{\sqrt{\mathcal{N}_k! V^{\mathcal{N}_k}}} (a_k^{\dagger})^{\mathcal{N}_k} |0\rangle$ number state

• First order term is relevant if (1) condensed regime $\Omega_{kl}^{pj}t \ll 1$ (c.f. $e^{-i\Omega_{kl}^{pj}t} \approx 0$ for particle kinetic regime $\Omega_{kl}^{pj}t \gg 1$) (2) coherent state representation $|in\rangle = |\{\alpha\}\rangle$ November 12-16, 2012, JGRG22 (RESCEU, Univ. of Tokyo)

Thermalization rate

$$\Gamma \equiv \frac{1}{\mathcal{N}_p(t)} \frac{d\mathcal{N}_p(t)}{dt} \simeq \frac{1}{\mathcal{N}_p V^2} \sum_{j,k,l}^K \operatorname{Im}[\Lambda_{pj}^{kl} \alpha_k \alpha_l \alpha_j^* \alpha_p^*]$$

Using
$$\Lambda_{pj}^{kl} = \Lambda V \delta_{k+l,p+j}$$
 and $\mathcal{N}_p \simeq |\alpha_p|^2 \simeq \mathcal{N}/K$ we obtain

$$\Gamma_{\text{condensed}} \simeq \Lambda \frac{\mathcal{N}}{V} = \Lambda n_a$$

 n_a : number density of axions

• Recover the previous estimation Erken, Sikivie, Tam, Yang, PRD85, 063520 (2012)

scalar phi⁴
$$\Gamma_{\text{condensed},s} \simeq \frac{\lambda n_a}{4m_a^2} \propto 1/R^3(t)$$

gravity $\Gamma_{\text{condensed},g} \simeq \frac{4\pi G m_a^2 n_a}{(\delta p)^2} \propto 1/R(t)$
 $\delta p \sim m_a \delta v \propto 1/R(t)$

Formation of axion BEC

• Axions form a BEC when $\Gamma_{\text{condensed},g} \gtrsim H$

corresponding to the photon temperature

$$T_{\rm BEC} \simeq 2 \times 10^3 \text{eV} \left(\frac{F_a}{10^{12} \text{GeV}}\right)^{0.56}$$

At this time, axions enter into thermal equilibrium with temperature

 $T_a(t_{\rm BEC}) \sim \frac{\delta p^2(t_{\rm BEC})}{3m_a} \sim 2.5 \times 10^{-37} \text{eV} \left(\frac{F_a}{10^{12} \text{GeV}}\right)^{3.25}$

thermally excited modes

$$n_T(T_a(t_{\rm BEC})) \simeq \left(\frac{m_a T_a(t_{\rm BEC})}{2\pi}\right)^{3/2}$$

$$\frac{n_T(T_a(t_{\rm BEC}))}{n_a(t_{\rm BEC})} \simeq 7.5 \times 10^{-80} \left(\frac{F_a}{10^{12} {\rm GeV}}\right)^{-0.005}$$

Almost all axions stay in the lowest energy state.

No photon cooling

• Interaction with other species b

$$H_{I,b}(t) = \frac{1}{V^4} \sum_{ijkl} \frac{1}{4} \Lambda_b^{ij}{}_{kl} e^{-i\Omega_{kl}^{ij}t} a_k^{\dagger} b_l^{\dagger} a_i b_j$$

• Assume b particles are represented as a number state

$$\begin{split} |\text{in}\rangle &= \prod_{k} \frac{1}{\sqrt{\mathcal{N}_{k}! V^{\mathcal{N}_{k}}}} (b_{k}^{\dagger})^{\mathcal{N}_{k}} |\{\alpha\}\rangle \\ \text{while} \quad |\{\alpha\}\rangle &= \prod_{i}^{K} e^{-\frac{1}{2}|\alpha_{i}|^{2}} \sum_{n=0}^{\infty} \frac{\alpha_{i}^{n}}{n! \sqrt{V^{n}}} (a_{i}^{\dagger})^{n} |0\rangle \\ \text{First order term exactly vanishes} \\ \left\langle \left[H_{I,b}(t), \mathcal{N}_{p}\right]\right\rangle &= 0 \end{split}$$

- Thermalization with other species is second order effect.
 - BEC axions do not have thermal contact with photons
 → does not affect cosmological parameters

Summary

- Derive the formula for thermalization rate in the condensed regime by using
 - in-in formalism
 - coherent state representation
- Formation of axion BEC occurs at $T_{\text{BEC}} \sim \mathcal{O}(1) \text{keV}$
- It does not conflict with standard cosmology
- Future directions
 - Extend the formalism including general relativistic corrections
 - Seek for other observable effects