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Abstract
We investigate the application of the Hilbert-Huang transform (HHT) to search for
gravitational waves. The HHT is a novel and adaptive approach to time-series anal-
ysis. The HHT consists of an empirical mode decomposition and Hilbert spectral
analysis. It can be applied to the analysis of gravitational-wave bursts, because this
analysis does not assume the waveform. Thus, in this paper, we propose the excess
power method with the HHT and estimate the detection efficiency of the proposed
method.

1 Introduction

The Hilbert-Huang transform (HHT) [1, 2, 3] is a novel analysis of time series data which contain physical
oscillatory modes. It is used to detect the signal in the noise and characterize physical oscillatory modes.
The HHT consists of an empirical mode decomposition (EMD), followed by a Hilbert spectral analysis
(HSA). It has a higher resolution of time-frequency than traditional analysis methods, because the EMD
is an adaptive time-frequency decomposition. Thus, the HHT can be applied to non-linear and non-
stationary time series data. On the other hand, traditional analysis methods such as the Fourier transform
and wavelet transform also assume that the data is linear and stationary.

The HHT has been applied to various fields; biomedical engineering, financial engineering, image
processing, seismic studies, ocean engineering, etc.

In this paper, we investigate the excess power method with the HHT to detect gravitational-wave
bursts. This analysis does not require any knowledge of gravitational wave, for example, waveform etc.
We also estimate the detection efficiency of the proposed method.

2 Hilbert spectral analysis and empirical mode decomposition

The Hilbert transform of function u(t) is defined by

v(t) =
1

π
P

∫ ∞

−∞

u(t′)

t− t′
dt′, (1)

where P indicates the Cauchy principal value. If the function u(t) ∈ Lp(R) for 1 < p < ∞, v(t) is
imaginary part of analytic function F (t) = u(t) + iv(t) = a(t)eiθ(t). Then, an instantaneous amplitude
(IA) a(t) and instantaneous frequency (IF) f(t) is defined by

a(t) =
√

u2(t) + v2(t), (2)

θ(t) = tan−1
( v(t)
u(t)

)
, (3)

f(t) =
1

2π

dθ(t)

dt
. (4)
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2 Method of gravitational-wave detection with Hilbert-Huang transform

Generally, it is not guaranteed that we obtain the physically meaningful IF. In order to obtain the
meaningful IF, Huang et al. [2] showed that the data u(t) should be satisfy the following two conditions:
(I) A number of extrema and number of zero crossing equal or differ at most by one, (II) The mean value
of the envelope defined using the local maxima and the envelope defined using the local minima is zero.

To satisfy the above conditions, we perform the EMD which is a series of high-pass filters in a sense.
The EMD decomposes the data u(t) to intrinsic mode functions (IMFs) and residual r(t),

u(t) =
∑
i

IMFi+ r(t). (5)

Then, each IMF has a locally monochromatic frequency scale that is obtained empirically. The EMD
algorithm is as follows:

• h1(t) = u(t)

• for i = 1 to imax

▷ hi,1(t) = hi(t)

▷ for k = 1 to kmax

◦ Identify the local maxima and minima of hi,k(t)

◦ Ui,k(t) = the upper envelope joining the local maxima using a cubic spline

◦ Li,k(t) = the lower envelope joining the local minima using a cubic spline

◦ mi,k(t) = (Ui,k(t) + Li,k(t))/2

◦ hi,k+1(t) = hi,k(t)−mi,k(t)

Exit from the loop k if a stoppage criterion

∑
j |mi,k(tj)|∑
j |hi,k(tj)| < ϵ

▷ IMFi = ci(t) = hi,k(t)

▷ hi+1(t) = hi(t)− ci(t)

• residual: r(t) = himax+1(t)

The EMD frequently occurs mode mixing which is defined as a single IMF either consisting of signals
of widely desperate scales or a signal of a similar scale residing in different IMF components. To suppress
mode mixing, we perform the ensemble EMD (EEMD) [4],
(1) Add a white noise series to data,
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Figure 1: The sine-Gauss signal + the
white-Gaussian noise
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(2) Decompose the data with added white noise into IMFs,
(3) Repeat step (1) and (2) in many times with different white noise series each time,
(4) Obtain the ensemble means of corresponding IMFs of the decompositions as the final result.

To perform the EMD, we must be set the empirical EMD parameters which depend on the charac-
teristic of the data [5]. End-of-loop-i condition is that residual becomes monotonic functions. We set the
stoppage criterion ϵ = 10−4, consequently, kmax is almost equal to or lower than 100 in our simulations.
The parameters for the EEMD are the size of ensemble Ne and standard deviation of white noise σe. We
set Ne = 200 and σe = 1.0. We tried other values of σe but we found that this values is optimal. As for
Ne, we verified that the results hardly change even with Ne > 100 but the value Ne = 50 is too small.

We apply the HHT to the sine-Gauss signal

h(t) = aexp[− (t/τ)2]sin(2πft). (6)

We set frequency of signal f = 600 Hz and τ = 0.1 sec/2π = 0.016 sec. Moreover, we use a white-
Gaussian noise with zero mean µ = 0 and standard deviation σ = 1.0. Figure 1 plots the data used in
our simulations. The signal-to-noise ratio (SNR) is defined by

SNR =

√∑
j

h2(tj)/σ. (7)

The sampling frequency and data length is 4096 Hz and 1.0 sec, respectively. The results of EMD are
showed in Fig. 2. The signal appears only in IMF2, because the sine-Gauss signal used in this case has
a single frequency component.

3 Excess power methods

We propose an excess power method with the HHT to detect gravitational-wave bursts. If the IA >
IAc for a duration δtc in some IMF, then we define the candidate of the detection for gravitational-wave
bursts. Figure 3 plots the IAs for each IMF1, 2 and 3. The blue line represent the maxinum IA of noise
only data. We evaluate the detection efficiency by using the receiver operating characteristics (ROC)
curve, which shows the detection rate (DR) as a function of the false alarm rate (FAR). We perform the
EEMD procedure for 1000 samples of each data which generated noise with a different seed.

Figure 4 plots the ROC curves for IMF1, 2 and 3 (δtc = 0 msec). In IMF1 and IMF3, it does not
detect gravtational-wave bursts for SNR = 10 and 15. We found that we obtatined the high detection
efficiency in IMF2 : DR > 0.95 and FAR < 0.05 for SNR = 10.

Figure 5 plots the ROC curves of IMF2 for each SNR = 10, 15 and 20 and different δtc. For SNR =
15 and 20, we obtain better detection efficiency for any δtc. When δtc = 4 msec, we find DR > 0.97 and
FAR < 0.05 for SNR = 10.
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Figure 3: The IAs for each IMF1 (left), 2 (center), 3 (right)
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Figure 4: The ROC curves for each IMF1 (left), 2 (center), 3 (right)
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Figure 5: The ROC curves of IMF2 for each SNR = 10 (left), 15 (center), 20 (right)

4 Conclusion

We investigated the property of excess power method with the HHT for gravitational-wave bursts. We
found the high detection efficiency only in IMF2. The signal almost appeared in IMF2, since the sine-
Gauss signal used this paper had a single frequency component (f = 600 Hz).

Even if SNR = 10, we obtained DR > 0.95 and the FAR < 0.05. Moreover, when the duration time
was δtc = 4 msec, DR and FAR were better than that of δtc = 0 msec.

We used the signal which had constant frequency. However, the real gravitational waves have com-
plicate and large-scale frequency modulation. Since we expect to appear the signal in multiple IMFs, it
is possible for us to obtain the better detection efficiency. We will report elsewhere.
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