

Hiroki Okawara, JGRG 22(2012)111317

"Quantum interferometer in Chern-Simons modified gravity"

RESCEU SYMPOSIUM ON

GENERAL RELATIVITY AND GRAVITATION

November 12-16 2012
Koshiba Hall, The University of Tokyo, Hongo, Tokyo, Japan

Quantum Interferometry in Chern-Simons modified gravity

Hiroki Okawara

Hirosaki University, Japan
with K. Yamada, and H. Asada (Hirosaki)
JGRG22 in Tokyo Nov. 12-16, 2012

Abstract

Accepted by
Phys. Rev. Lett.

1 Chern-Simons (CS) gravity

CS gravity modifies GR via the addition of a correction

$$
\begin{equation*}
S_{C S}=\frac{1}{16 \pi G} \int d^{4} x \frac{1}{4} f R^{\star} R \tag{1}
\end{equation*}
$$

Following [1], let us consider a system of nearly spherical bodies in the standard PPN point-particle approximation. The CS correction to the metric becomes

$$
\begin{equation*}
\delta_{C S} g_{0 i}=\frac{2 G}{c^{3}} \sum_{A} \frac{\dot{f}}{r_{A}}\left[\frac{m_{A}}{r_{A}}\left(\vec{v}_{A} \times \vec{n}_{A}\right)^{i}-\frac{J_{A}^{i}}{2 r_{A}^{2}}+\frac{3}{2} \frac{\left(\vec{J}_{A} \cdot \vec{n}_{A}\right)}{r_{A}^{2}} n_{A}^{i}\right] \tag{2}
\end{equation*}
$$

2 Phase shifts in a quantum interferometer

We consider a quantum interferometer that consists of a closed path C (its area S) on the Earth, as shown by Fig 1. Δ is a phase difference induced by $g_{0 i}$.
By using Stokes theorem, Δ is rewritten in the surface integral form over S

$$
\begin{equation*}
\Delta=\frac{m c}{\hbar} \oint_{C} \vec{g} \cdot d \vec{r}=\frac{m c}{\hbar} \int_{S}(\vec{\nabla} \times \vec{g}) \tag{3}
\end{equation*}
$$

Figure 1: Quantum interferometer on the Earth orbiting around the Sun.

3 Phase shifts for Chern-Simons (CS) gravity

Let us substitute the CS term of Eq. (2) into Eq. (3) to obtain Δ for CS gravity. We focus on the Earth mass in CS gravity and use $r_{E} \gg \sqrt{S}$. Hence,

$$
\begin{align*}
& \Delta_{C S}=2 \dot{f} \frac{m G M_{E} S}{\hbar c^{2} r_{E}^{3}} \tilde{\Delta}_{C S} \tag{4}\\
& \tilde{\Delta}_{C S}=\left[3\left(\vec{v}_{E} \cdot \vec{n}_{E}\right) \vec{n}_{E}-\vec{v}_{E}\right] \cdot \vec{N}_{I} . \tag{5}
\end{align*}
$$

Eq. (5) depends on the latitude and direction, and changes with the Earth's spin and orbital motion.

Figure 2: Daily variation in phase differences by CS effects. The red, green, and blue curves correspond to \vec{N}_{I} for a horizontal plane and two vertical ones (one facing the East and the other facing the North), respectively.

4 Time variation and the latitude

By using the coordinate rotation $\vec{N}_{I}(t)=R\left(\omega_{E} t\right) \vec{N}_{I 0}, \vec{n}_{E}(t)=R\left(\omega_{E} t\right) \vec{n}_{E 0}$, $\tilde{\Delta}_{C S}$ is rewritten in the rotating matrix $R(t)$

$$
\begin{align*}
\tilde{\Delta}_{C S} & =\left(R(t)^{-1} \vec{v}_{E}\right)^{\mathrm{T}}\left[3\left(\vec{n}_{E 0} \cdot \vec{N}_{I 0}\right) \vec{n}_{E 0}-\vec{N}_{I 0}\right], \tag{6}\\
R(t)^{-1} \vec{v}_{E} & =\{R(\phi)\}^{-1}\left\{R\left(\omega_{E} t\right)\right\}^{-1}\left\{R\left(\Omega_{E} t\right)\right\}^{-1} R\left(I_{E}\right) R\left(\Omega_{E} t\right)\left(\begin{array}{c}
v_{E} \\
0 \\
0
\end{array}\right) . \tag{7}
\end{align*}
$$

Figure 3: Seasonal variation in phase differences by CS effects. The green solid is full data points.

5 Possible constraint on \dot{f}

\dot{f} induces the phase shift

$$
\begin{equation*}
\left|\Delta_{C S}\right| \sim 10^{-3} \mathrm{~s}^{-1} \times\left(\frac{m c^{2}}{1 \mathrm{GeV}}\right)\left(\frac{\dot{f}}{c}\right)\left(\frac{S}{0.4 \mathrm{~m}^{2}}\right) \tag{8}
\end{equation*}
$$

Current phase mesurement accuracy at $O\left(10^{-3}\right) \rightarrow \dot{f} c^{-1}<10^{0} \mathrm{~S}$ bound.
GPB (Gravity Probe B), LAGEOS space mission $\rightarrow \dot{f} c^{-1}<10^{-3} \mathrm{~s}$.

6 Conclusion

We considered effects of CS gravity on a quantum interferometer.

- Daily and seasonal variations in phase shifts are predicted with an estimate of the size of the effects.
- Neutron interferometry with ~ 5 meters arm length and $\sim 10^{-4}$ phase measurement accuracy would place a bound on a CS parameter comparable to Gravity Probe B satellite [2].

References

[1] S. Alexander and N. Yunes, Phys. Rev. Lett. 99, 241101 (2007). [2] H. Okawara, K. Yamada, H. Asada, accepted Phys. Rev. Lett. (2012) (arXiv: 1210.4628).

