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Abstract

Possible effects of Chern-Simons (CS) gravity on a quantum interferometer
turn out to be dependent on the latitude and direction of the interferometer
on the Earth in orbital motion around the Sun.

1 Chern-Simons (CS) gravity

CS gravity modifies GR via the addition of a correction

SCS =
1

16πG

∫
d4x

1

4
fR!R, (1)

Following [1], let us consider a system of nearly spherical bodies in the standard
PPN point-particle approximation. The CS correction to the metric becomes

δCSg0i =
2G

c3

∑

A

ḟ

rA

[
mA

rA
(#vA × #nA)

i − J i
A

2r2A
+

3

2

( #JA · #nA)

r2A
ni
A

]
. (2)

2 Phase shifts in a quantum interferometer

We consider a quantum interferometer that consists of a closed path C (its area S)
on the Earth, as shown by Fig 1. ∆ is a phase difference induced by g0i .
By using Stokes theorem, ∆ is rewritten in the surface integral form over S

∆ =
mc

!

∮

C
#g · d#r =

mc

!

∫

S
(#∇× #g). (3)

Figure 1: Quantum interferometer on the Earth orbiting around the Sun.

3 Phase shifts for Chern-Simons (CS) gravity

Let us substitute the CS term of Eq. (2) into Eq. (3) to obtain ∆ for CS gravity.
We focus on the Earth mass in CS gravity and use rE $

√
S. Hence,

∆CS = 2ḟ
mGMES

!c2r3E
∆̃CS , (4)

∆̃CS = [3(#vE · #nE)#nE − #vE ] · #NI . (5)

Eq. (5) depends on the latitude and direction, and changes with the Earth’s spin
and orbital motion.

4 Time variation and the latitude

By using the coordinate rotation #NI(t) = R(ωEt) #NI0,#nE(t) = R(ωEt)#nE0,
∆̃CS is rewritten in the rotating matrix R(t)

∆̃CS =
(
R(t)−1#vE

)T [
3(#nE0 · #NI0)#nE0 − #NI0

]
, (6)

R(t)−1#vE = {R(φ)}−1{R(ωEt)}−1{R(ΩEt)}−1R(IE)R(ΩEt)




vE
0
0



 . (7)

Figure 2: Daily variation in phase differences by CS effects. The red, green, and
blue curves correspond to #NI for a horizontal plane and two vertical ones (one
facing the East and the other facing the North), respectively.

5 Possible constraint on ḟ

ḟ induces the phase shift

|∆CS | ∼ 10−3s−1 ×
(

mc2

1GeV

)(
ḟ

c

)(
S

0.4m2

)
. (8)

Current O(10−3) → ḟ c−1 < 100s bound
GPB (Gravity Probe B), LAGEOS space mission → ḟ c−1 < 10−3s

Figure 3: Seasonal variation in phase differences by CS effects. The green solid is
full data points.

6 Conclusion

We considered effects of CS gravity on a quantum interferometer.

• Daily and seasonal variations in phase shifts are predicted with an estimate of
the size of the effects

• Neutron interferometry with ∼ 5 meters arm length and ∼ 10−4 phase mea-
surement accuracy would place a bound on a CS parameter comparable to
Gravity Probe B satellite [2].

References

[1] S. Alexander and N. Yunes, Phys. Rev. Lett. 99, 241101 (2007).

[2] H. Okawara, K. Yamada, H. Asada, accepted Phys. Rev. Lett. (2012)
(arXiv: 1210.4628)

Quantum Interferometry in Chern-Simons modified gravity

Hiroki Okawara

Hirosaki University, Japan
with K. Yamada, and H. Asada (Hirosaki)

JGRG22 in Tokyo Nov. 12 - 16, 2012
Abstract: Possible effects of Chern-Simons (CS) gravity on a quantum interferometer

turn out to be dependent on the latitude and direction of the interferometer
on the Earth in orbital motion around the Sun.

1 Chern-Simons (CS) gravity

CS gravity modifies GR via the addition of a correction

SCS =
1

16πG

∫
d4x

1

4
fR!R, (1)

Following [1], let us consider a system of nearly spherical bodies in the standard
PPN point-particle approximation. The CS correction to the metric becomes

δCSg0i =
2G

c3

∑

A

ḟ

rA

[
mA

rA
(#vA × #nA)

i − J i
A

2r2A
+

3

2

( #JA · #nA)

r2A
ni
A

]
. (2)

2 Phase shifts in a quantum interferometer

We consider a quantum interferometer that consists of a closed path C (its area S)
on the Earth, as shown by Fig 1. ∆ is a phase difference induced by g0i .
By using Stokes theorem, ∆ is rewritten in the surface integral form over S

∆ =
mc

!

∮

C
#g · d#r =

mc

!

∫

S
(#∇× #g). (3)

Figure 1: Quantum interferometer on the Earth orbiting around the Sun.

3 Phase shifts for Chern-Simons (CS) gravity

Let us substitute the CS term of Eq. (2) into Eq. (3) to obtain ∆ for CS gravity.
We focus on the Earth mass in CS gravity and use rE $

√
S. Hence,

∆CS = 2ḟ
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mGMES

!c2r3E
∆̃CS , (4)

∆̃CS = [3(#vE · #nE)#nE − #vE ] · #NI . (5)

Eq. (5) depends on the latitude and direction, and changes with the Earth’s spin
and orbital motion.

4 Time variation and the latitude

By using the coordinate rotation #NI(t) = R(ωEt) #NI0,#nE(t) = R(ωEt)#nE0,
∆̃CS is rewritten in the rotating matrix R(t)

∆̃CS =
(
R(t)−1#vE

)T [
3(#nE0 · #NI0)#nE0 − #NI0

]
, (6)

R(t)−1#vE = {R(φ)}−1{R(ωEt)}−1{R(ΩEt)}−1R(IE)R(ΩEt)




vE
0
0



 . (7)

Figure 2: Daily variation in phase differences by CS effects. The red, green, and
blue curves correspond to #NI for a horizontal plane and two vertical ones (one
facing the East and the other facing the North), respectively.

5 Possible constraint on ḟ
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Figure 3: Seasonal variation in phase differences by CS effects. The green solid is
full data points.

6 Conclusion

We considered effects of CS gravity on a quantum interferometer.

• Daily and seasonal variations in phase shifts are predicted with an estimate of
the size of the effects

• Neutron interferometry with ∼ 5 meters arm length and ∼ 10−4 phase mea-
surement accuracy would place a bound on a CS parameter comparable to
Gravity Probe B satellite [2].

References

[1] S. Alexander and N. Yunes, Phys. Rev. Lett. 99, 241101 (2007).

[2] H. Okawara, K. Yamada, H. Asada, accepted Phys. Rev. Lett. (2012)
(arXiv: 1210.4628)

Quantum Interferometry in Chern-Simons modified gravity

Hiroki Okawara
Hirosaki University, Japan

with K. Yamada, and H. Asada (Hirosaki)

JGRG22 in Tokyo Nov. 12 - 16, 2012
Abstract: Possible effects of Chern-Simons (CS) gravity on a quantum interferometer turn out to be dependent on

the latitude and direction of the interferometer on the Earth in orbital motion around the Sun.

Abstract

Possible effects of Chern-Simons (CS) gravity on a quantum interferometer
turn out to be dependent on the latitude and direction of the interferometer
on the Earth in orbital motion around the Sun.

1 Chern-Simons (CS) gravity

CS gravity modifies GR via the addition of a correction

SCS =
1

16πG

∫
d4x

1

4
fR!R, (1)

Following [1], let us consider a system of nearly spherical bodies in the standard
PPN point-particle approximation. The CS correction to the metric becomes

δCSg0i =
2G

c3

∑

A

ḟ
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第10章 中緯度の式

10.1 CS gravity

CS補正による計量は、

δCSg0i =
2G

c3

∑

A

ḟ

rA

[
mA

rA
("vA × "nA)

i − J i
A

2r2A
+

3

2

( "JA · "nA)

r2A
ni
A

]
(10.1)

となる。

10.2 Phase shifts

位相差は、

∆ =
1

!

∮

C

δHdt

=
mc

!

∮

C

"g · d"r (10.2)

となる。ただし、"g = (g01, g02, g03), m denotes the quantum particle mass,

! ∼ h/2π denotes Dirac’s constant である。ストークスの定理から、位
相差は次のようになる。

∆ =
mc

!

∫

S

("∇× "g) · d"S (10.3)

したがって、CS重力による位相差∆CSは、

∆CS =
2m

!c2

∫

S

ḟ
GME

r3
[3("vE · "nE)"nE − "vE] · "NIdS

= 2ḟ
mGMES

!c2r3E
[3("vE · "nE)"nE − "vE] · "NI (10.4)
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and orbital motion.
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By using the coordinate rotation #NI(t) = R(ωEt) #NI0,#nE(t) = R(ωEt)#nE0,
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Figure 2: Daily variation in phase differences by CS effects. The red, green, and
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5 Possible constraint on ḟ

ḟ induces the phase shift

|∆CS | ∼ 10−3s−1 ×
(
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Current phase mesurement accuracy at O(10−3) → ḟ c−1 < 100s bound.
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Figure 3: Seasonal variation in phase differences by CS effects. The green solid is
full data points.

6 Conclusion

We considered effects of CS gravity on a quantum interferometer.

• Daily and seasonal variations in phase shifts are predicted with an estimate of
the size of the effects.

• Neutron interferometry with ∼ 5 meters arm length and ∼ 10−4 phase mea-
surement accuracy would place a bound on a CS parameter comparable to
Gravity Probe B satellite [2].
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ḟ

rA

[
mA

rA
(#vA × #nA)

i − J i
A

2r2A
+

3

2

( #JA · #nA)

r2A
ni
A

]
. (2)

2 Phase shifts in a quantum interferometer

We consider a quantum interferometer that consists of a closed path C (its area S)
on the Earth, as shown by Fig 1. ∆ is a phase difference induced by g0i .
By using Stokes theorem, ∆ is rewritten in the surface integral form over S

∆ =
mc

!

∮

C
#g · d#r =

mc

!

∫

S
(#∇× #g). (3)

Figure 1: Quantum interferometer on the Earth orbiting around the Sun.

3 Phase shifts for Chern-Simons (CS) gravity

Let us substitute the CS term of Eq. (2) into Eq. (3) to obtain ∆ for CS gravity.
We focus on the Earth mass in CS gravity and use rE $

√
S. Hence,

∆CS = 2ḟ
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Abstract

Possible effects of Chern-Simons (CS) gravity on a quantum interferometer
turn out to be dependent on the latitude and direction of the interferometer
on the Earth in orbital motion around the Sun.

1 Chern-Simons (CS) gravity

CS gravity modifies GR via the addition of a correction

SCS =
1

16πG

∫
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4
fR!R, (1)

Following [1], let us consider a system of nearly spherical bodies in the standard
PPN point-particle approximation. The CS correction to the metric becomes
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2 Phase shifts in a quantum interferometer

We consider a quantum interferometer that consists of a closed path C (its area S)
on the Earth, as shown by Fig 1. ∆ is a phase difference induced by g0i .
By using Stokes theorem, ∆ is rewritten in the surface integral form over S

∆ =
mc

!

∮

C
#g · d#r =

mc

!

∫

S
(#∇× #g). (3)

Figure 1: Quantum interferometer on the Earth orbiting around the Sun.

3 Phase shifts for Chern-Simons (CS) gravity

Let us substitute the CS term of Eq. (2) into Eq. (3) to obtain ∆ for CS gravity.
We focus on the Earth mass in CS gravity and use rE $

√
S. Hence,

∆CS = 2ḟ
mGMES

!c2r3E
∆̃CS , (4)

∆̃CS = [3(#vE · #nE)#nE − #vE ] · #NI . (5)

Eq. (5) depends on the latitude and direction, and changes with the Earth’s spin
and orbital motion.

4 Time variation and the latitude

By using the coordinate rotation #NI(t) = R(ωEt) #NI0,#nE(t) = R(ωEt)#nE0,
∆̃CS is rewritten in the rotating matrix R(t)

∆̃CS =
(
R(t)−1#vE

)T [
3(#nE0 · #NI0)#nE0 − #NI0

]
, (6)

R(t)−1#vE = {R(φ)}−1{R(ωEt)}−1{R(ΩEt)}−1R(IE)R(ΩEt)




vE
0
0



 . (7)

Figure 2: Daily variation in phase differences by CS effects. The red, green, and
blue curves correspond to #NI for a horizontal plane and two vertical ones (one
facing the East and the other facing the North), respectively.

5 Possible constraint on ḟ

ḟ induces the phase shift

|∆CS | ∼ 10−3s−1 ×
(

mc2

1GeV

)(
ḟ

c

)(
S

0.4m2

)
. (8)

Current phase mesurement accuracy at O(10−3) → ḟ c−1 < 100s bound.
GPB (Gravity Probe B), LAGEOS space mission → ḟ c−1 < 10−3s.

Figure 3: Seasonal variation in phase differences by CS effects. The green solid is
full data points.
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