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Abstract
We study stability of charged black hole solutions in Lovelock theory that is a natu-
ral higher dimensional extension of 4-dimensional Einstein theory. In the Lovelock-
Maxwell system, there exist black hole solutions with two parameters, i.e., mass and
charge. We examine the linear stability of this solution and construct master equa-
tions. We present the criterion for instability using these equations. By checking
these criterion numerically, we show that nearly extreme black holes show instability
in high frequency modes.

1 Introduction

In higher dimensional gravitational theory, when we adopt brane world scenarios, black holes might be
created at colliders [1]. Thus it is important to examine the properties of higher dimensional black holes.
There exist many properties, but linear stability is one of the most important property. This is because
black holes with instability must not be created.

When we consider higher dimension, we must extend 4-dimensional Einstein theory into higher di-
mensional gravitational theory. In 4-dimensions, Einstein theory is constructed on the basis of two as-
sumptions: the covariance and no higher derivative term. Thus, it is natural to extend the 4-dimensional
gravitational theory keeping these assumptions. When we extend like this, the most general gravitational
theory is not Einstein theory. It is Lovelock theory [2]. Therefore, it is important to examine stability of
black hole solutions in Lovelock theory.

In Lovelock theory, there exist black hole solution with mass and stability of this solution has been
already examined in [4]. However, it is supposed that black holes in colliders have charge because such
objects result from proton-proton collisions. Thus we must regard Maxwell charge in examining stability.
In the Lovelock-Maxwell system, there exist black holes with mass and charge, namely charged Lovelock
black hole solutions. Here, we examine these solutions.

The organization is as follows. In section 2, we present charged Lovelock black hole solutions. In
section 3, we examine the stability. The background solution has the spherical symmetry, so we can
discuss tensor-type, vector-type and scalar-type perturbations separately. Thus we present the criteria
for instability separately. Furthermore, we present a numerical result for 5-dimensional case. In section
4, we summarize the discussions.

2 Charged Lovelock Black Holes

In this section, we present charged Lovelock black hole as the solution of the Lovelock-Maxwell system.
This system is governed by the action∫

dDx
√
−g
[
LLovelock −

1
4
FµνF

µν

]
(1)

where Fµν is the field strength of Maxwell field Aµ and LLovelock is

LLovelock = β1R+
k∑
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βm(2m)!
2mm

∏2m−2
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2 Instability of Charged Lovelock Black Holes

Here n is related to the dimension D as n = D − 2 and βms are arbitrary constants which are called
Lovelock coefficients. And k corresponds to the maximum order defined as k ≡ [(D − 1)/2].

In this system, there exist spherically symmetric solutions. We here start from the ansatz

ds2 = −f(r)dt2 + 1/f(r)dr2 + r2γijdx
idxj , (3)

F tr = E(r), other components = 0 . (4)

Substituting these into the equations of motion derived from the above action, we obtain the following
solution:

f(r) = 1 − r2ψ(r) ,

P[ψ] ≡
k∑

m=2

[
βm
m
ψm
]

+ ψ =
M
rn+1

− Q2

r2n
, (5)

and

E(r) =
√
n(n− 1)Q/rn . (6)

Here M is a mass parameter of a black hole and Q corresponds to charge. In order to gain the explicit
form, we must solve the k-th order polynomial equation (5). This equation has at most k roots, but there
must only an asymptotically flat root. Here we call this asymptotic flat root charged Lovelock black hole.

3 Stability Analysis

In this section, we check the stability of this charged Lovelock black hole solution [3]. This solution has
the spherical symmetry, so we can classify the first order perturbations into tensor-type, vector-type and
scalar-type and we can treat these separately.

3.1 Tensor-type Perturbations

Firstly, we discuss the tensor-type perturbations. The Maxwell field Aµ has no tensorial perturbations
and then we only consider the gravitational perturbations

δgtt = δgtr = δgti = δgrr = δgri = 0, δgij = r2φ(r)eiωtTij . (7)

Here, Tij is tensor harmonics which is characterized by Tij |k|k = −(`(`+n− 1)− 2)Tij . Using this metric
perturbation, we can obtain (

−∂2
r∗ + Vg(r)

)
Ψ = ω2Ψ , (8)

where

Ψ = φ(r)r
√
T ′(r), dr∗/dr = 1/f , T (r) = rn−1∂ψP ,

Vg(r) =
`(`+ n− 1)f

(n− 2)r
T ′′

T ′ +
1

r
√
T ′
∂2
r∗(r

√
T ′) . (9)

This is a Schrödinger-type equation and its eigenvalue is ω2 and we decompose like eiωt. Thus, if there
exist negative eigenvalue states, charged Lovelock black holes are unstable. The effective potential for
this equation is characterized by the function T (r) and the constant `. Then , for instance, negative
eigenvalue states may exist if T (r) behaves peculiar. Indeed, as is shown In [5], we can show that the
Schrödinger equation for large ` modes has negative eigenvalue states if T ′ or T ′′ have negative regions.
Thus what we have to do next is checking these criteria and we will do in subsection 3.4.
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3.2 Vector-type Perturbations

For vector-type perturbations, we take the Regge-Wheeler gauge in which perturbative variables are
expressed as

δAt = δAr = 0, δAi = CeiωtVi
δgti = weiωtVi, δgri = veiωtVi, otherwise = 0 , (10)

where Vi is the vector harmonics which is characterized by Vi|l|l = −κvVi. Substituting these into
equation of motion and using suitable variables, we can gain the following master equation:(

−∂2
r∗ +

(
Vg(r) Vc(r)
Vc(r) Vem(r)

))(
Ψ
ζ

)
= ω2

(
Ψ
ζ

)
, (11)

where

Vg(r) =
κv − (n− 1)

n− 1
fT ′

rT
+ r

√
T ′∂2

r∗
1

r
√
T ′

,

Vc(r) = −2(Ern)

√
κv − (n− 1)

2(n− 1)
f
√
T ′

r(n+2)/2T
,

Vem(r) = (κv + (n− 1))
f

r2
+ 2(Ern)2

f

rn+1T
+ r−(n−2)/2∂2

r∗r
(n−2)/2 . (12)

This is a Schrödinger equation with two components and ω2 is its eigenvalue. In the same way as tensor-
type, if the above Schrödinger equation has negative eigenstates, black holes are unstable. However, as
is shown in [5], the Schrödinger operator is positive-definite. Therefore, there is no negative eigenstate in
the above system.

3.3 Scalar-type Perturbations

Finally, we consider the scalar-type perturbations. In the Zerilli gauge, perturbative variables are ex-
pressed as

δgtt = fH0Y, δgtr = H1Y, δgrr = HY/f, δgij = r2KYγij ,
δFtr = XY, δFti = Y Y|i, δFri = ZY|i, otherwise = 0 , (13)

where Y is the scalar harmonics which is characterized by Y|l
|l = −κsY. Substituting these into equa-

tion of motion and using suitable variables which is discussed in [5], the perturbative equation can be
summarized as (

−∂2
r∗ +

(
Vg(r) Vc(r)
Vc(r) Vem(r)

))(
Ψ
ζ

)
= ω2

(
Ψ
ζ

)
, (14)

where

Vg(r) = κs
f

nr

(
4(κs − n)

T ′

AT
− T ′′
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+

2n(rnE)2f2

ATrn

(
ln
(

fT ′

rn−2(AT )2

))′

+
AT
r
√
T ′
f∂r

(
f∂r

r
√
T ′

AT

)
,
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,

A = 2κs + nrf ′ − 2nf . (15)
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The above equation is Schrödinger equation. Thus, in the same way as tensor-type perturbations, whether
negative energy states exist or not determines the stability of the background solutions. For this, as is
shown in [5], we can prove that “if T ′ or 2T ′2 −TT ′′ have negative regions, black holes show instability”.
Thus what we have to do next is checking the behaviors of the above functions and we examine these in
the next subsection.

3.4 Numerical Result in 5-dimensions

Here, we check the behaviors of three function T ′, T ′′ and 2T ′2 − TT ′′ numerically. For instance, we
present the result for the 5-dimensional case. Fig.1 corresponds to this result.
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Figure 1: We show the unstable parameters in 5-dimensions. The horizontal axis correspond charge and
the vertical one is mass. From this figure, there exist instability for nearly extreme black holes.

From this figure, we can easily see that nearly extreme black hole show instability. Note that this
property is common to the other dimensions. Therefore, we can say that nearly extreme black holes are
unstable in the Lovelock-Maxwell system.

4 Conclusion

We have studied the stability of charged black holes in Lovelock black holes. we have presented the master
equation for each type of perturbations and shown the criteria for instability. We have also examined the
criteria numerically and shown that nearly extreme black holes are unstable. These result indicates that
black hole with nearly extreme mass are not created and very high energy is needed to produce black
holes in colliders if Lovelock theory is true.
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