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Primordial fluctuation

Primordial 13 billion yrs
fluctuation SRR,

300,000yrs

PG ‘ R

(WMAP data)

 matter fluctuation = fluctuation of spacetime
(=curvature perturbation)

e |tis asource of the current cosmic structure.

* From observations, we already know it does exist.

e But we don’t know its origin.



Generation of the primordial fluctuation

Basic paradigm
Inflation happened in the early Universe. During the inflationary

stage, any light scalar field acquires fluctuations that are
eventually stretched to cosmological scales.
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When such a scalar field affects the expansion of the Universe, its
fluctuating energy density creates the curvature perturbation
through the Einstein equations.
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Generation of the primordial fluctuation

e Minimal scenario

Inflaton fluctuations create the curvature perturbations.

¢

 Almost scale invariant and almost Gaussian.

* Good in the sense that it is simple, economical and consistent with all

the observations so far. But this is just an assumption rather than a
prediction.



Generation of the primordial fluctuations

e Non-minimal scenario
Anything else

Over the last decade, many non-minimal scenario have
been proposed.

Non-vacuum state, higher derivative interactions(DBI, Galileon,
etc. ), self-interactions, features in potential, conversion of
isocurvature after inflation (multi-field models, curvaton,

modulated reheating, multi-brid, inhomogeneous end of
inflation, etc.), ....

Now, there are many models for the generation of the primordial
fluctuation. We want to get useful information regarding its nature.



How can we reveal the origin of perturbations?

* Power spectrum

(Cz G, ) = (2m)°

P (k1)

10
Multipole moment (£)

All the models predict nearly scale invariant spectrum.

~ dlog(k*F;)

Tlg—l

dlog k

= 0(0.01)

P is not enough to disentangle the degeneracy.



How can we reveal the origin of perturbations?

Is there another way other than the power spectrum?

3- and 4-point functions could be useful!!
(non-Gaussianity)

Bi-spectrum: 3-point function
Tri-spectrum: 4-point function

e Useful in the sense that they can provide us what
cannot be probed by means of the power spectrum.

Any deviation from the minimal scenario generically
leads to the detectable level of non-Gaussianity.

* Potentially observable in the near future.



Various shapes of bi-spectrum

e Local type (Komatsu&Spergel 2001)

B(k1 kg kg) X (

1
: + 2 perms.
kg P )

¢ EqUiIateral type (Creminelli et al 2005)

3(ky + ky — ka) (ko + ks — k) (ks + k1 — &
17273

* Orthogonal type (senatore et al 2009)

— 7 + O perms.

3 3 3 8 3
B(ky, ka, ks) x | =55 — w1 T — ;
(ks ke 3>°<< TR T S T T R RV T )

Detection of primordial non-gaussianity and distinction of the
scale dependence allows to constrain the models.



How can we reveal the origin of perturbations?

From now on, | will focus on the so-called local type perturbation.

The curvature perturbation is generated from field perturbations
on super-horizon scales. (curvaton, modulated reheating,
inhomogeneous end of inflation, multi-brid, etc.)



How can we reveal the origin of perturbations?

Separate universe approach (Kodama&Hamazaki 1998, Nambu&Taruya 1998,
Wands et al 2000)

Perturbation is obtained by differentiating the
background solutions.

Each Hubble region evolves like FLRW universe
with different energy density and pressure.



(e.g. Starobinsky 1985, Salopek&Bond 1980, Sasaki&Stewart 1996,
6 N fO Fma | ISIT)  Sasaki&Tanaka 1998, Malik, Lyth&Sasaki 2004,

Sugiyama,Komatsu&Futamase 2012)

C(t, @) =) Na(t)do" () + % 3 Nao()36°(2)30" (7) + -+
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N, (t) 9o = 5606,




Intuitive understanding of the 6N formalism

' ‘.nv

Wisdom by T.Tanaka

Curvature = Expansion

—

expand




How can we reveal the origin of perturbations?

ZN(L OCD ‘|— ZNab ()(Da f)_|_
\//7
Same position Gau55|an(assumpt|on)

This type of perturbation is realized if the focused scales are
super-horizon at the time of its generation.




How can we reveal the origin of perturbations?

((t, @) = Z N ()36 (7) + 5 zb: Ny ()60 ()6 " (Z) + - - -

Two sources for non-Gaussianity of the curvature perturbation
* Non-gaussianity of field fluctuations 5¢ 5gb

09

* Non-linear relation between field fluctuations and C

0P
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Non-Gaussianity(non-linearity) parameters
(Byrnes, Sasaki and Wands, 2006)

Bi-spectrum

(e Ca, G ) = (2m)* Be (o, ko, s) O (k1 + Ea + Fis)

Tri-spectrum

— —

(Cr, GG Gy ) = (27) T (K, ko, ks, ka)8 (ky + Ko + ks + ka)

6
Be (ks k2, k3) = < fn (Pe(k1) Pe(ke) + Pe(k2) Pe(ks) + Pe(ks) Pe(kr))
Te(ky, ko, ks, ks) = 7~i (Pe(ki3)Pe(ks)Pe(ky) + 11 perms)
H4
=g, (Pe(ko) Pe(ks) P (ks) + 3 perms)

Three non-linearity parameters that are observables.



Non-Gaussianity parameters

Current observational bounds on the non-linearity parameters

—10 < far, < 70

(Komatsu et al., 2010)

—0.6 x 10* < 7y < 3.3 x 10*

_7.4 >< 105 < gNL < 8-2 >< 105 (Smidt et al., 2010)

Planck is expected to give us /x1. < O(1) and 7~ < 600 .

(Kogo and Komatsu, 2006)

More stringent bound may be obtained by using other
CosmOIOgicaI prObeS- (e.g. Pajer&Zaldarriaga 2012)



Non-Gaussianity parameters

e Standard canonical inflaton fluctuation

fNL — O (6) (e.g. Maldacena 2002)

e Non-inflaton scenarios

INL = O(l) or > O(l) depending on the model

Bispectrum can be useful to disentangle the degeneracy of
models.

What can we say if we also include the trispectrum?



Local-type inequality

6f Na.NbNab NaNbNa.chc
—JNL — T —
D (NCNC)Q . (Nde)B
9
O B}
™L = | =J/NL
) (TS and M.Yamaguchi, 2008)

This is universal in the sense that it is independent of the
underlying models.

Detection of fnl >20 means we surely detect TNL. as well.

This inequality also suggests a possibility that fnp, is small but 7NLL
can be very large.



Local-type inequality

More general statement (Smith, Lo Verde&Zaldarriaga 2011)

S Lk, Ok, Lk,

v = — lim ,
I 12 k=0 P s(ky)P £ (k)

I Lk, Lk, Ly Lk, e

Ty, = — lim -
M 4k k=0 P (k)P (k) P (K + Ks))

q 2
TNL = (ngL)




Local-type inequality

More general statement (sugiyama 2012)

ngL :(._.}_O)z[/\—l—A—l-QFI

Inclusion of the loop corrections still leads to

6 \2
TNL = g.fI\’L



Local-type inequality
* Single source case (e.g. curvaton model)

Q — N(“)O(D _|_ 5]\/@}@50@)2 —|— ...

§f o NaNbNab . %
A
NaNbNachc quﬁqb
TNL = = —5
NL (NaNg)® N;
TNL = —fNL

A consistency relation for the single source case



Local-type inequality

* Multi-source case (for example, inflaton and curvaton)

1
- NS TS TS 2
g T AI@O(.TD —I_ AJOO_ —I_ §A'UO'OO- _I_ T (Ichikawa et al. 2008)

Gaussian Non-Gaussian
25 TNL 14 Ni . Peco
36 f2; N2 - Peo

If the non-gaussian part is subdominant, the ratio
becomes much larger than 1.

A ratio 7~1./ f3; is a good indicator to get information of
number of fields that contribute to the curvature
perturbation.



10 100

NL

(TS et al. 2010)



Basic strategy to test the origin of perturbation

_____Non-detection New idea needed

of TN,
single source
. Detection — B %TNL _
Detection 25 11
f7 ——— > 1
observation of TN L 36 77,
data — Detection -
of TNL multiple sources
 Non-detection ——i
of INL
| Non-detection Maybe, the

of TNL minimal scenario



What about gnl?

H4 jva be J\/Ta, j\/rb jvc
ar gN L — T T *
(NaNg)

29

This is not directly related to fnl and taunl. Thus, it brings another
information specific to each model.

Example: self-interacting curvaton (e.g. Engvist&Nurmi 2005)

. 1 5 . 5\
V(o) = =m2o? + (L)
2 ° S \my,
10f H7H . " .
NL — — —JNL — without self-interaction
I 3 108

gNL = ANQfEIL T BNQfNL + O}JQ with self-interaction

gnl is sesitive to the shape of the field potential.
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What about gnl?

We find gnl is model dependent. But, we can classify the
models into three types:

e Suppressed gnp, type (gnr ~ [suppression factor| x fxp, )

e Linear gyy, type (gnr, ~ fnn)

e Enhanced gy, type (gnn ~ [, with n > 1 or n = 2 for many models)



Consistency relations among non-linearity parameters

Category

fnr—7nr relation

Examples and fyr—¢gn1 relation

Single-source

™ = (6fx1/5)°

(pure) curvaton (w/o self-interaction)

(onw = —(10/3) fr, — (575/108)]"

(pure) curvaton (w/ self-interaction)
. b
[gnt, = Angf21 + BrofaL + C_\'Q][ )

(pure) modulated reheating
loxw = 10 fyr, — (50/3)]"”

modulated-curvaton scenario

107 (d)
]_;.’2 3;2 V)
gNL = 3?,décf_\'L—‘

Inhomogeneous end of hybrid inflation
[gnr, = (10/3)mer fri]

Inhomogeneous end of thermal inflation

[ont, = —(10/3) fr, — (50/27)]

Modulated trapping
lonL = (Q,ffg)fr?w](f]

Multi-source

™ > (6fn1/5)°

mixed curvaton and inflaton

[onn, = —(10/3)(R/(1 + R)) fxr, — (575/108)(R/(1 + R)jg’]{";']J

mixed modulated and inflaton

[, = 10(R/(1 + R)) far, — (50/3)(R/(1 + R))*]™

mixed modulated trapping and inflaton

[onn = (2/9)((1+ R)/R) 31, = (25/162)7n1]”

multi-curvaton
[gnL = Cuefr, ont. = (4/15) f2,]Y

Multi-brid inflation (quadratic potential)
[oxe, = —(10/3)n fxr, gt = 2£3 ]

Multi-brid inflation (linear potential)
a 1
o, = 2% ]”

Constrained
multi-source

L = C faL

(TS et al. 2010)

ungaussiton (C' ~ 103, n = 4/3)

Different consistency relations for different models.



Higher order correlators

3-point function

4-point function

5-point function

6-point function

L
~1
esl S HETRTS

# of Non-linearity parameters=# of graphs with different topologies

Yh LT

General formula of # for arbitrary n is known. (Fry 1984)



The local type inequalities for n-point function (n:even)

General method to derive the local type inequalities
(TS and Yokoyama, 2011)

Example: 6-point function

2
2

| S\ 2
Tél)m > (ﬁl)) | (2 (f(z )

> P > g

Five independent inequalities



4 )

INL

suggests significant contribution
of non-inflaton source.

J
4 ) 4 )
TNL gNL
clarifies if the perturbation is probes interactions(parameters)
sourced by a single field or not. y % of the candidate model. y

Motonari Mouri and his three sons
(lord)




But, | do hope this is not the case for the following three persons.
Individuals are already awesome for me.




Summary

Test of non-gaussianity can be useful to reveal the origin of
primordial perturbations.

We can obtain information about number of fields
contributing to the curvature perturbation by using fnl and
taunl.

Detection of all the non-linearity parameters greatly helps us
constrain the model of the early Universe.

Very soon, Planck results will tell us something.
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