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Abstract
We will suggest two methods to detect Ellis wormholes which is an example of
traversable wormholes of the Morris-Thorne class the with Einstein ring systems
and with the double images. We show that, given the configuration of the gravita-
tional lensing and the radii of the Einstein ring and relativistic Einstein rings, we can
distinguish between a black hole and Ellis wormhole in principle. We also discuss
the signed magnification sums of general spherical lens models including the singular
isothermal sphere, the Schwarzschild lens and the Ellis wormhole. We show that the
signed magnification sums are a very useful tool to distinguish exotic lens objects.

1 Comparison between wormholes and black holes with their
Einstein ring and relativistic Einstein rings

The Ellis spacetime was investigated as a geodesically complete particle model by Ellis [1] and turned
out to describe a wormhole connecting two Minkowski spacetimes. The Ellis wormhole spacetime is a
static, spherically symmetric, asymptotically flat solution of the Einstein equation with a massless scalar
field with a wrong sign as a matter field. Although such a matter field violates energy conditions, it
could represent the negative energy density from the quantum effects, such as the Casimir effect. This
spacetime is a typical and simplest example of wormholes proposed by Morris and Thorne [2, 3]. This is
a traversable wormhole in the sense that an observer can cross this wormhole in both directions.

The deflection angle of light in the Ellis wormhole geometry was studied by Chetouani and Clement
[4] and recently Nakajima and Asada [5]. The gravitational lensing on the Ellis geometry was studied
by Dey and Sen [6], Abe [7] and Toki et al. [8] in the weak gravitational field and Perlick [9], Nandi et
al. [10] and Tejeiro and Larranaga [11] in the strong gravitational field (see Virbhadra and Keeton [12],
Virbhadra [13], Bozza [14], Bozza and Mancini [15] and references therein for the strong field limit).

Recently, Abe suggests to detect the Ellis wormholes with the light curves [7] and Toki et al. suggest
a method to detect the Ellis wormholes with the astrometric image centroid displacements [8]. We will
suggest two methods to detect them with Einstein ring systems [16] and with double images [17]. In this
section, we consider the Einstein ring system.

The line element in the Ellis wormhole solution is given by

ds2 = −dt2 + dr2 + (r2 + a2)(dθ2 + sin2 θdϕ2), (1)

where a is a positive constant corresponding the radius of the wormhole throat at r = 0. The photon is
scattered if |b| > a, while reaches the throat if |b| ≤ a, where b is the impact parameter of the photon.
Since we are interested in the scattering problem, we assume |b| > a. Chetouani and Clement [4] derived
the exact deflection angle α of light on the Ellis wormhole geometry as follows:

α = 2K
(a
b

)
− π, (2)

where K is the complete elliptic integral of the first kind. The deflection angle is diverging in the limit

|b| → a, while it is approximately given in the weak-field regime |b| ≫ a by α ≈ ±π
4

(
a
b

)2
.

Now we will consider the case that both the observer and the source object are far from the lensing
object, or Dl ≫ b and Dls ≫ b, where Dl and Dls are the separations between the observer and lens and
between the lens and source, respectively. The configuration of the gravitational lensing is given in FIG
1.

1Email address: 11ra001t@rikkyo.ac.jp



2 Research of the celestial objects by gravitational lensing

�������
����

?

6

?
6?
6

� -
h

x
x

�������
�������

�������
��

������������CCCCC
CCCCCCCDs Dl

Dls

O
L b

S I

��
��

Figure 1: The configuration of the gravitational lensing. The light rays emitted by the source S are
deflected by the lens L (a wormhole or a black hole) and reach the observer O with the angle of the
lensed image θ, instead of the real angle ϕ. b and ᾱ are the impact parameter and the effective deflection
angle, respectively. Dl and Dls are the separations between the observer and the lens and between the
lens and the source, respectively.

The lens equation is given by
Dlsᾱ = Ds(θ − ϕ), (3)

where ᾱ = (α mod 2π) is the effective deflection angle, θ and ϕ are the angles of the lensed image and the
real image from the observer, respectively, and Ds = Dl+Dls is the separation between the observer and
source. Note that we have assumed |ᾱ| ≪ 1, |θ| ≪ 1 and |ϕ| ≪ 1. The deflection angle can be expressed
α = ᾱ+2πN , where N is a non-negative integer, denoting the winding number of the light ray. The ring
image corresponds to the image angle θ for vanishing real angle ϕ = 0. By the symmetry, the image is
necessarily a ring with the diameter angle θ.

Since b = Dlθ, we find that the ring image is given by θN = a/(DlkN ), where kN ∈ (0, 1) is a unique
root of the transcendental equation

2K(k)− η

k
= (2n+ 1)π, (4)

where η = (Dsa)/(DlDls). We should note that 2K(k)− η/k is monotonically increasing with respect to
k and changes from −∞ to ∞ as k increases from 0 to 1. The uniqueness of the root follows from the
monotonicity. Moreover, we can conclude that kN monotonically increases and approaches 1 as N → ∞
and hence the image angle θN monotonically decreases and approaches a/Dl.

In the weak-field regime |b| ≫ a, the winding number N should be N = 0. Using the deflection angle

α ≈ ±π
4

(
a
b

)2
, we can solve the equation (4) approximately and get the diameter angle of the Einstein

ring

θ0 ≃
(
π

4

Dls

DsD2
l

a2
) 1

3

≃ 2.0 arcsecond

(
Dls

10Mpc

) 1
3
(
20Mpc

Ds

) 1
3
(
10Mpc

Dl

) 2
3
(

a

0.5pc

) 2
3

. (5)

This approximation is good for Dl ≫ a and Dls ≫ a. The relative error is ∼ 10−2 for a = 0.5pc and
Dl = Dls = 10 Mpc.
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In the especially strong-field regime, where the winding number N becomes N ≥ 1, we can easily
check that a ≃ b or kN ≃ 1 satisfies the transcendental equation (4) in numerical calculations. Physically
this means that the light rays which wind around the wormhole nearly on the photon sphere make
the relativistic Einstein rings [9, 18]. Then the diameter angles of the relativistic Einstein rings are
approximately given by

θN≥1 ≃ a

Dl
≃ 1.0× 10−2 arcsecond

(
10Mpc

Dl

)(
a

0.5pc

)
. (6)

If we are given the distance Ds to the source from the observer, the distance Dl to the lens from the
observer and the radius θ0 of the Einstein ring, we can determine the radius of the throat a from Eq.
(5). Then, we can use θN≥1 (6) to test the assumption that the lens object is a wormhole. From Eqs.
(5) and (6) we obtain the relation between θ0 and θN≥1 by

θN≥1 ≃
(
4

π

Ds

Dls

) 1
2

θ
3
2
0 . (7)

This relation generally holds in astrophysical situations, as long as a ≪ Dl and a ≪ Dls are satisfied.
The relation between θ0 and θN≥1 for the Schwarzschild spacetime (, see [19, 20, 21],)

θN≥1 ≃ 3
√
3

4

Ds

Dls
θ20 (8)

is different from that on the Ellis spacetime (7). FIG. 2 shows the angle of the relativistic Einstein ring
θN≥1 versus the angle of the Einstein ring θ0 for Dl = Dls = 10Mpc. Thus, we can distinguish between
black holes and wormholes in principle if we are given Ds/Dl, θ0 and θN≥1. We consider the experimental
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Figure 2: The angle of the relativistic Einstein ring θN≥1 versus the angle of the Einstein ring θ0 for
Dl = Dls = 10Mpc. The broken (green) and solid (red) lines plot the cases where the lens objects are a
wormhole and a black hole, respectively.

situation where we know the separation Ds between the observer and the source and the separation Dl

between the observer and the lens. We assume that we do not know whether the lens object is a black
bole or a wormhole and do not its parameter, i.e., the mass M or the radius a of the throat in advance.

We need at least two observable quantities to determine whether the lens object is a black hole or
wormhole since the lens system has one parameter in this situation. First, we observe an Einstein ring
and determine the parameter for both possibilities. Second, we observe relativistic Einstein rings and
tell the wormhole from the black hole. If the predicted relativistic ring angles by the black hole and by
the wormhole were of similar size, we could not discern the difference. However, Eqs. (7), (8) and Fig. 2
show that we do not confuse them.
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We conclude that we can detect the relativistic Einstein rings by wormholes which have a ≃ 0.5pc
at a galactic center with the distance Dl = Dls = 10Mpc and which have a ≃ 10AU in our galaxy with
the distance Dl = Dls = 10kpc using the most powerful modern instruments which have the resolution
of 10−2arcsecond such as a 10-meter optical-infrared telescope. Note that the corresponding black holes
which have the Einstein rings of the same size are galactic supermassive black holes with 1010M⊙ and
107M⊙, respectively, and that the relativistic Einstein rings by these black holes are too small to measure
with the current technology.

2 The signed magnification sums of the general spherical lens

In this section, we will show that the signed magnification sum would be a powerful tool to research
the lens objects as well as the total magnification and the magnification ratio if we observe a multiple
image. In particular, we will show that one can distinguish between the Ellis wormhole lens and the
Schwarzschild lens with the signed magnification sums.

We consider the general spherical lens model with the deflection angle in the weak field approximation,
parametrized by

α = ±Cb−n = ± C

Dn
l

θ−n, (9)

where C is a positive constant and n is a non-negative integer and we have used the relation b = Dlθ. If
n is odd, then the sign is only the upper one, while if n is even, then the sign is the upper one for θ > 0
and the lower one for θ < 0. Thus, we have to treat two lens equations when n is even. This lens model
describes the singular isothermal sphere, the Schwarzschild lens and the Ellis wormhole for n = 0, 1 and
2, respectively. The case where n ≥ 3 would describe some exotic lens objects and the gravitational lens
effect of modified gravitational theories. We do not consider the case n = 0 below for simplification. The
following discussion does not depend on the value of C.

The lens equation is given by

θ̂n+1 − ϕ̂θ̂n ∓ 1 = 0, (10)

where θ̂ ≡ θ/θ0 and ϕ̂ ≡ ϕ/θ0 and θ0 ≡
(

DlsC
DsDn

l

) 1
n+1

is the Einstein ring angle. The lens equation (10)

has symmetry with respect to the point ϕ̂ = θ̂ = 0, We can concentrate ourselves on the case where
the source angle ϕ is positive for symmetry. The solutions θ̂1, θ̂2, · · · , θ̂n+1 of the lens equation (10) of
(n+ 1)-th degree satisfy

n+1∑
i=1

θ̂i

ϕ̂

dθ̂i

dϕ̂
= 1. (11)

Note that these solutions θ̂i may be complex and not all the magnifications are always physical and that
Eq. (11) is satisfied regardless of the sign of Eq. (10). We realize the number of the real solutions

(θ̂+ > 0 and θ̂− < 0) is always two , regardless of the value of n. Thus, the magnification invariant (11)
is a observable quantity only when n = 1.

The signed magnifications of the images in the weak field limit are given by

µ0±(ϕ̂) ≡
θ̂±(ϕ̂)

ϕ̂

dθ̂±

dϕ̂
(ϕ̂). (12)

Figure 3 shows that one can distinguish the general spherical lens models with their signed magnification
sums µ0+ + µ0− which are less than unity. The lower bound of the total magnification |µ0+| + |µ0−| is
given by

2

1 + n
≤ µ0+ + µ0− ≤ |µ0+|+ |µ0−| . (13)
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Figure 3: The singed magnification sums of some general spherical lens models. The solid, broken, dot
and dot-dashed lines are the general spherical lens models for n = 1, 2, 3 and 4, respectively. This shows
that we can distinguish each models from the others.

Therefore, gravitational lensing necessarily gives amplified light curves for n = 1, while it does not
necessarily for n > 1. Recently, Kitamura et al. investigated the demagnified light curves [22].

The signed magnification sum is a powerful tool to find exotic lens objects because it only depends
on the deduced source angle ϕ̂ and n and we just have to observe the images for ϕ̂ ≲ 1 and for ϕ̂ ≫ 1
to determine the signed magnification sum. However, we need a high resolution to observe the double
images. We would also distinguish the lens objects with the ratio of magnifications of the double images
and the total magnification. If we also measure the difference θ+ − θ− of the image angles, one can
determine the Einstein ring angle θ0 and the source angle ϕ = θ0ϕ̂.

Our method with the signed magnification sums is complementary to the methods to detect exotic
lens objects with the light curves [7, 22] and the astrometric image centroid displacements [8]. To observe
double images are much more feasible than to observe relativistic Einstein rings [16] because relativistic
images are faint and small and because relativistic rings are rare sights.
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