RESCEU SYMPOSIUM ON

GENERAL RELATIVITY AND GRAVITATION

JGRG 22

November 12-16 2012
Koshiba Hall, The University of Tokyo, Hongo, Tokyo, Japan

On the vacua of
 maximal gauged supergravity

Masato NOZAWA

(KEK)

Cowork with Hideo Kodama (KEK)

Based on
H.Kodama-M.N, arXiv:1210.4238

talk at JGRG22

Inflation in string theory

פrecision Cosmology

CMB data strongly implies inflation
Challenge: account for inflation from fundamental theories
String theory: candidate for unifying all gauge interactions

- based on supersymmetry
- formulated in 10/11 dimensions
not fully successful due to moduli stabilization, η problem...

Why $\mathrm{N}=8$ supergravity

$N=8$ supergravity fails to describe unified gauge interactions, but...

- $N=8$ SUGRA is the restrictive than $N<8$ theories
- UV finite? (consensus: up to 7 loops)
creditable guide toward quantum gravity
- direct relation to fundamental theories
- IIA, IIB, M-theory : N=8
ideal playground for exploring string theory dynamics independent of SUSY breaking objects
- Effective theory of M2branes
- AdS/CMP applications
- Landscape for string vacua

Our work

We want to reveal full moduli space structure of $N=8$ supergravity
,Focus:

- classifying vacua (Mink/AdS/dS)
- stability of vacua
- Motivations:
- more realistic construction of string inflation
- extract universal features of gravity sector of string theory
-Key:
- embedding tensor formalism
- homogeneous scalar manifold $E_{7(7)} / \operatorname{SU}(8)$
- Abstract of our results:
- an exhaustive list of $\operatorname{SL}(8, \mathbf{R})$-type vacua
- an analytic expression of full mass spectra

N=8 Supergravity

„gauged supergravity
rembedding tensor

$\mathrm{N}=8$ ungauged supergravity

Q Maximal ($\mathrm{N}=8$) ungauged supergravity

Cremmer \& Julia 78

- $N=8$ is the maximal \# of SUSYs for spin $\leqq 2$
- unique multiplet: $2^{8}=128$ bosons+128 fermions

	graviton	gravitino	vector	gaugino	scalar
\# of fields	1	8	28	56	70
dof	2	$2 \times 8=16$	$2 \times 28=56$	$2 \times 56=112$	1×70

- 70 scalars parametrize $E_{7(7)} / \mathrm{SU}(8)$
coset representative: $56 x 56$ matrix $\quad i, j, \ldots=\mathbf{8}$ of $\operatorname{SU}(8)$

$$
L(\phi)_{\underline{M}^{\underline{N}}}=\exp \left(\begin{array}{cc}
0 & \phi_{i j k l} \\
\phi^{i j k l} & 0
\end{array}\right), \quad \phi_{i j k l}=\phi_{[i j k l]}=\eta(\star \bar{\phi})_{i j k l}, \quad \eta= \pm 1
$$

- obtained via T^{7} compactification of M-theory
- no scalar potential, no nonabelian gauge fields

Gauged supergravity

Q N=8 gauged supergravity a la embedding tensor formalism.
deWit-Samtleben-Trigiante 03
Gauging: enhances global symmetry $G \subset E_{7(7)}$ to local symmetry

$$
\partial_{\mu} \rightarrow D_{\mu}=\partial_{\mu}-g A_{\mu}{ }^{M} X_{M} .
$$

g : gauge coupling
X_{M} : generators of G t_{α} : generators of $E_{7(7)}$

$$
X_{M}=\Theta_{M}{ }^{\alpha} t_{\alpha}
$$

$\alpha=1, . ., 133$: adjoint of $E_{7(7)}$
$M=1, . ., 56$: fundamental of $E_{7(7)}$

- Consistency
Θ : embedding tensor
(i) Gauge group G satisfies dimG $\leqq 28$
\checkmark simplest ex: $\operatorname{SO}(8)$ gauging de Wit \& Nicolai 81
(ii) G must form a closed subgroup
(iii) SUSY $\Theta_{M}{ }^{\alpha} \in \mathbf{9 1 2} \subset \mathbf{5 6} \times 133$

$$
\Omega^{M N} \Theta_{M}{ }^{\alpha} \Theta_{N}{ }^{\beta}=0
$$

Ω : $\mathrm{Sp}(56, \mathrm{R}) \supset \mathrm{E}_{7(7)}$ metric
$\checkmark O(\mathrm{~g})$: SUSY transformation rules for fermions \checkmark O(g): mass terms for fermions $\checkmark O\left(g^{2}\right)$: scalar potential

Scalar potential

Mink/AdS/dS \Rightarrow Einstein-70scalar system $E_{7(7)} / \mathrm{SU}(8)$

$$
L=\frac{1}{2} R+\frac{1}{8} \operatorname{Tr}\left(\partial^{\mu} M \partial_{\mu} M^{-1}\right)-V(\phi), \quad \begin{aligned}
& M_{M N}=\left(L^{T} L\right)_{M N} \\
& \\
& L=L\left(\phi_{i j k l}\right): \text { coset rep. of } E_{7(7)} / \operatorname{SU}(8)
\end{aligned}
$$

$$
V=\frac{g^{2}}{672}\left(X_{M N}{ }^{P} X_{P Q}{ }^{S} M^{M P} M^{N Q} M_{R S}+7 X_{M N}{ }^{Q} X_{P Q}{ }^{N} M^{M P}\right) .
$$

- unbounded from below and above, and nonlinear fun. of $\phi_{i j k l}$
- we can move critical pts to origin of scalar mfd Dall'Agata-Inverso'11
- homogeneity of scalar mfd $E_{7(7)} / \mathrm{SU}(8)$
- V is invariant under $\quad L\left(\phi^{\prime}\right)=U L(\phi) h^{-1}\left(\phi, \phi^{\prime}\right)+\Theta^{\prime}=U \Theta$

At the origin, $\phi_{i j k l}=0, L(\phi)=\mathbf{1}_{56}$
$\partial_{\rho} V \propto t_{\rho M}{ }^{N} \Theta_{M}{ }^{\alpha} \Theta_{N}{ }^{\beta}\left(\delta_{\alpha \beta}+7 \eta_{\alpha \beta}\right)+\Theta_{M}{ }^{\alpha} \Theta_{M}{ }^{\beta} f_{\rho \beta}{ }^{\gamma} \delta_{\alpha \gamma}$
combined with closure condition $\quad \Omega^{M N} \Theta_{M}{ }^{\alpha} \Theta_{N}{ }^{\beta}=0$
just solve a set of quadratic eqs. for Θ

SL (8,R) vacua

Dall'Agata-Inverso considered gaugings $\subset \operatorname{SL}(8, \mathbf{R}) \subset E_{7(7)}$ for which $\Theta \in 912=36+36^{\prime}+42 \sigma+42 \sigma^{\prime}$

$$
\Theta_{a b}{ }^{c}{ }_{d}=\delta_{[a}{ }^{c} \theta_{b] d}, \quad \Theta^{a b c}{ }_{d}=\delta^{[a}{ }_{d} \xi^{b] c}, \quad(\theta, \xi): 8 \times 8 \text { matrices }
$$

- assumed ansatz on (θ, ξ) and found several vacua (Mink/AdS/dS)
- mass spectra coincide if residual gauge symmetries are equivalent
\checkmark diagonalized 70×70 mass matrix by computers

gauging	residual sym.	$V_{\text {c }}$	$m^{2} /\left\|V_{c}\right\|$
$\mathrm{SO}(8)$			
$\begin{aligned} & \mathrm{SO}(7,1) \\ & \mathrm{SO}(7) \ltimes T^{7} \end{aligned}$	SO(6)	AdS	$2^{(2)},-1^{(20)},-\frac{1}{4}^{(20)}, 0^{(28)}$
$\mathrm{SO}(6) \times \mathrm{SO}(1,1) \ltimes T^{12}$			
$\begin{aligned} & \mathrm{SO}(7,1) \\ & \mathrm{SO}(6) \times \mathrm{SO}(1,1) \ltimes T^{12} \end{aligned}$	$\mathrm{SO}(5)$	AdS	$2^{(3)},-\frac{4}{3}^{(14)}, \frac{2}{3}^{(5)}, 0^{(48)}$
$\mathrm{SO}(3,5)$	$\mathrm{SO}(3) \times \mathrm{SO}(5)$	dS	$-2^{(1)}, 4^{(5)}, 2^{(30)}, \frac{4}{3}^{(14)},-\frac{2}{3}^{(5)}, 0^{(15)}$

Scanning Vacua

rall SL(8,R) type vacua
>stability of vacua

SL (8,R) vacua

We can list all possible $\operatorname{SL}(8, \mathbf{R})$ vacua by
Kodama-MN '12 obtaining all 8 x 8 matrices (θ, ξ) satisfying

$$
2\left(\theta^{2}-\xi^{2}\right)-(\theta \operatorname{Tr} \theta-\xi \operatorname{Tr} \xi)=2 a \mathbb{I}_{8}, \quad \theta \xi=c \mathbb{I}_{8} \quad a, c: \text { constants }
$$

- $\operatorname{SL}(8, \mathbf{R})$ vacua are exhausted by list of Dall'agata-Inverso

Gauging	$G_{\text {reg }}$	Λ
$\mathrm{SO}(4,4)$	$\mathrm{SO}(4) \times \mathrm{SO}(4)$	dS
$\mathrm{SO}(5,3)$	$\mathrm{SO}(5) \times \mathrm{SO}(3)$	dS
$\mathrm{SO}(8)$		
$\mathrm{SO}(7,1)$	$\mathrm{SO}(7)$	AdS
$\mathrm{SO}(7) \ltimes \mathbb{T}^{7}$		
$\mathrm{SO}(8)$		
$\mathrm{SO}(7,1)$	$\mathrm{SO}(6)$	AdS
$\mathrm{SO}(7) \ltimes \mathbb{T}^{7}$		
$\mathrm{SO}(6) \times \mathrm{SO}(1,1) \ltimes \mathbb{T}^{12}$		AdS
$\mathrm{SO}(7,1)$	$\mathrm{SO}(5)$	$\mathrm{SO}(1,1) \ltimes \mathbb{T}^{12}$
$\mathrm{SO}(6) \times \mathrm{SO}(1)$	$\mathrm{SO}(2)^{4}$	Mink.
$\mathrm{SO}(6,2)$	$\mathrm{SO}(2)^{4}$	Mink.
$\mathrm{SO}(4) \times \mathrm{SO}(2,2) \ltimes \mathbb{T}^{16}$	$\mathrm{SO}(2)^{2}$	Mink.
$\mathrm{SO}(2) \times \mathrm{SO}(2) \ltimes \mathbb{T}^{20}$		

SL (8,R) vacua

We can list all possible $\operatorname{SL}(8, \mathbf{R})$ vacua by obtaining all 8×8 matrices (θ, ξ) satisfying

$$
2\left(\theta^{2}-\xi^{2}\right)-(\theta \operatorname{Tr} \theta-\xi \operatorname{Tr} \xi)=2 a \mathbb{I}_{8}, \quad \theta \xi=c \mathbb{I}_{8} \quad a, c: \text { constants }
$$

- SL(8,R) vacua are exhausted by list of Dall'agata-Inverso
- Minkowski vacua are parametrized by continuous parameters
- For some vacua ($\Lambda \neq 0$), a single parameter remains
e.g., dS vacua with $\mathrm{SO}(4,4) \rightarrow \mathrm{SO}(4) \mathrm{xSO}(4)$ gauging

$$
\theta=\lambda \mathbb{I}_{4} \oplus(-\lambda) \mathbb{I}_{4}, \quad \xi=\theta^{-1}, \quad V=\frac{g^{2}}{4}\left(\lambda^{2}+\lambda^{-2}\right)
$$ implying 1parameter deformation of the theory

SL $(8, R)$ vacua

Mass spectra are analytically determined

Kodama-MN ‘12

$$
\begin{aligned}
&\left(M^{2}\right)_{\rho \sigma}:=\frac{g^{2}}{168}\left[\left(s_{(\rho} s_{\sigma)}\right)_{M}{ }^{N} \operatorname{Tr}\left(X_{M}{ }^{T} X_{N}+7 X_{M} X_{N}\right)+2\left(s_{(\rho}\right)_{M}{ }^{N} \operatorname{Tr}\left(s_{\sigma)}\left[X_{(M},{ }^{T} X_{N}\right)\right]\right) \\
&\left.-\operatorname{Tr}\left(\left[s_{(\rho}, X_{M}\right]\left[s_{\sigma)},{ }^{T} X_{M}\right]\right)\right] .
\end{aligned}
$$

$$
s_{\rho}=\frac{1}{2}\left(t_{\rho}+{ }^{T} t_{\rho}\right)=\left(\begin{array}{cc}
2 S_{\rho} \wedge \mathbb{I} & U_{\rho} \\
\star U_{\rho} & -2 S_{\rho} \wedge \mathbb{I}
\end{array}\right) \quad \begin{array}{ll}
& \Theta_{a b}{ }^{c}{ }_{d}=\delta_{[a}{ }^{c} \theta_{b] d} \\
& \Theta^{a b c}{ }_{d}=\delta^{[a}{ }_{d} \xi^{b] c}
\end{array}
$$

decompose into SL(8,R) irrep
$S_{a b}: 35$ scalars $\quad S={ }^{T} S, \quad \operatorname{Tr}(S)=0$,
$U_{a b c d}: 35$ pseudoscalars $U=\star U$.
kinetic term $=\frac{1}{2} \operatorname{Tr}\left((\partial S)^{2}\right)+\frac{1}{12} \partial U \cdot \partial U$
e.g. electric gaugings $(\xi=0) \& V_{c} \neq 0$: cosmological constant

$$
\begin{aligned}
\theta=\left(\begin{array}{cc}
\lambda_{1} \mathbb{I}_{n_{1}} & 0 \\
0 & \lambda_{2} \mathbb{I}_{n_{2}}
\end{array}\right) \quad & S=\left(\begin{array}{cc}
A_{11} & A_{12} \\
{ }^{T} A_{12} & A_{22}
\end{array}\right) \quad A_{11}=\frac{1}{n_{1}} \operatorname{Tr}\left(A_{11}\right) \mathbb{I}_{n_{1}}+\hat{A}_{1} \\
& n_{1}+n_{2}(=8) \text { split }
\end{aligned}
$$

SL $(8, R)$ vacua

Mass spectra for $\Lambda \neq 0$ vacua

$$
M_{(1)}^{2}=\frac{8}{n_{1} n_{2}} m_{0(\mathbf{1}, \mathbf{1})}^{2} \operatorname{Tr}\left(A_{11}\right)^{2}+m_{1\left(\mathbf{N}_{1}, \mathbf{1}\right)}^{2} \operatorname{Tr}\left(\hat{A}_{1}^{2}\right)+m_{2\left(\mathbf{1}, \mathbf{N}_{2}\right)}^{2} \operatorname{Tr}\left(\hat{A}_{2}^{2}\right)+2 m_{*\left(\mathbf{n}_{1}, \mathbf{n}_{2}\right)}^{2} \operatorname{Tr}\left({ }^{T} A_{12} A_{12}\right)
$$

$$
\operatorname{SO}\left(n_{1}, n_{2}\right) \rightarrow \operatorname{SO}\left(n_{1}\right) \mathrm{xSO}\left(n_{2}\right) \quad \theta=\left(\begin{array}{cc}
\lambda_{1} \mathbb{I}_{n_{1}} & 0 \\
0 & \lambda_{2} \mathbb{I}_{n_{2}}
\end{array}\right)
$$

(n_{1}, n_{2}) correspond to the unbroken gauge symmetries

$$
m_{0(\mathbf{1}, \mathbf{1})}^{2}=-2 V_{c}, \quad m_{1\left(\mathbf{N}_{1}, \mathbf{1}\right)}^{2}=\frac{4 V_{c}}{n_{1}-2}, \quad m *=0 \text { : NG directions }
$$

$m_{(\mathbf{p}, \mathbf{q})}^{2}:(\mathbf{p}, \mathbf{q})$ irrp of $\operatorname{SO}\left(n_{1}\right) \mathrm{xSO}\left(n_{2}\right) \quad N_{1}=\frac{1}{2}\left(n_{1}-1\right)\left(n_{1}+2\right)$
Mass of pseudoscalars can be obtained similarly

$$
m_{U[\ell]}^{2}=\frac{2\left[2 \ell^{2}-2 n_{1} \ell+\left(n_{1}-2\right)^{2}\right]}{\left(n_{1}-6\right)\left(n_{1}-2\right)} V_{c} . \quad l: \text { labeling index }
$$

Mass spectra are dependent only on residual gauge symmetries
\Rightarrow insensitive to original gaugings \& deformation parameters

SL ($8, R$) vacua

Minkowski vacua

SO(6,2), SO(4)xSO(2,2) $\ltimes T^{16}, \mathrm{SO}(2) \mathrm{xSO}(2) \ltimes T^{20}$ admit Minkowski vacua
e.g., 35 scalar mass eigenvalues for $\mathrm{SO}(6,2) \rightarrow \mathrm{SO}(2)^{4}$ gauging

$$
\begin{aligned}
& \theta=r \mathbb{I}_{2} \oplus s \mathbb{I}_{2} \oplus t \mathbb{I}_{2} \oplus\left(-\frac{1}{r s t}\right) \mathbb{I}_{2}, \quad: \text { specified by } 3 \text { continuous parameters } \\
& m_{(\mathbf{1}, \mathbf{1}, \mathbf{1})(\times 3)}^{2}=0, \quad m_{*(\times 24)}^{2}=0 \quad:(\mathbf{2}, \mathbf{2}, \mathbf{1}, \mathbf{1})+\cdots,
\end{aligned} \quad \begin{aligned}
& 4 s t(r-s)(r-t)\left(1+r^{2} s t\right), \\
& m_{i(\times 8)}^{2}=\frac{g^{2}}{16 r^{2} s^{2} t^{2}} \times \begin{cases}4 r t(s-r)(s-t)\left(1+r s^{2} t\right), & :(\mathbf{1}, \mathbf{2}, \mathbf{1}, \mathbf{1}) \\
4 r s(r-t)(s-t)\left(1+r s t^{2}\right), & :(\mathbf{1}, \mathbf{1}, \mathbf{2}, \mathbf{1}) \\
4\left(1+r^{2} s t\right)\left(1+r s^{2} t\right)\left(1+r s t^{2}\right), & :(\mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{2})\end{cases}
\end{aligned}
$$

Unless (r, s, t) are pairwise equal, m^{2} will be negative
\longrightarrow generic Minkowski vacua are unstable

SL($8, R$) vacua

Exhaustive list of SL(8,R) type vacua \& mass spectra

Gauging	$G_{\text {reg }}$	Λ	m_{S}^{2}	m_{U}^{2}
SO(4, 4)	$\mathrm{SO}(4) \times \mathrm{SO}(4)$	dS	$-2_{(\times 1)}, 2_{(\times 18)}, 0_{(\times 16)}$	$2_{(\times 18)}, 1_{(\times 16)},-2_{(\times 1)}$
$\mathrm{SO}(5,3)$	$\mathrm{SO}(5) \times \mathrm{SO}(3)$	dS	$-2_{(\times 1)}, \frac{4}{3}_{(\times 14)}, 4_{(\times 5)}, 0_{(\times 15)}$	$2_{(\times 30)},-\frac{2}{3}(\times 5)$
$\begin{aligned} & \hline \hline \mathrm{SO}(8) \\ & \mathrm{SO}(7,1) \\ & \mathrm{SO}(7) \ltimes \mathbb{T}^{7} \end{aligned}$	SO(7)	AdS	$2_{(\times 1)},-\frac{4}{5}(\times 27), 0_{(\times 7)}$	$-\frac{2}{5}(\times 35)$
$\begin{aligned} & \mathrm{SO}(8) \\ & \mathrm{SO}(7,1) \\ & \mathrm{SO}(7) \ltimes \mathbb{T}^{7} \\ & \mathrm{SO}(6) \times \mathrm{SO}(1,1) \ltimes \mathbb{T}^{12} \end{aligned}$	SO(6)	AdS	$-1_{(\times 20)}, 2_{(\times 2)}, 0_{(\times 13)}$	$0_{(\times 15)},-\frac{1}{4}(\times 20)$
$\begin{aligned} & \mathrm{SO}(7,1) \\ & \mathrm{SO}(6) \times \mathrm{SO}(1,1) \ltimes \mathbb{T}^{12} \end{aligned}$	$\mathrm{SO}(5)$	AdS	$-\frac{4}{3}(\times 14), 2_{(\times 3)}, 0_{(\times 18)}$	$\frac{2}{3}(\times 5), 0_{(\times 30)}$
$\mathrm{SO}(6,2)$	$\mathrm{SO}(2)^{4}$	Mink.	Eq. (4.54)	Eq. (4.55)
$\mathrm{SO}(4) \times \mathrm{SO}(2,2) \ltimes \mathbb{T}^{16}$	$\mathrm{SO}(2)^{4}$	Mink.	Eq. (4.68)	Eq. (4.69)
$\mathrm{SO}(2) \times \mathrm{SO}(2) \ltimes \mathbb{T}^{20}$	$\mathrm{SO}(2)^{2}$	Mink.	Eq. (4.70)	Eq. (4.71)

- mass eigenvalues are insensitive to a deformation parameter
- all vacua break SUSY completely
- (A)dS vacua are always unstable

Summary

Q What we have done

- complete classification of vacua for gauge group contained in $\operatorname{SL}(8, \mathbf{R})$
\checkmark many vacua ($\Lambda \neq 0$) contain deformation parameter
\checkmark except $N=8$ AdS vacua, all SUSYs are broken
- obtained analytic expressions of mass eigenvalues
\checkmark insensitive to underlying gaugings \& deformation parameter
\checkmark all vacua are generically unstable
- Future prospects
- explore other gaugings $\not \subset \mathrm{SL}(8, \mathbf{R})$
- construct inflationary models
- find higher dimensional flux vacua description

