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Inflation in string theory

Precision Cosmology

String theory: candidate for unifying all gauge interactions

•formulated in 10/11 dimensions

•based on supersymmetry

CMB data strongly implies inflation

not fully successful due to moduli 
stabilization, ! problem... 

KKLT, KKLMMT, 
axion monodromy,...
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Why N=8 supergravity
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ideal playground for exploring string theory dynamics
independent of SUSY breaking objects

N=8 supergravity fails to describe unified gauge interactions, but...

‣N=8 SUGRA is the restrictive than N<8 theories

‣direct relation to fundamental theories

•IIA, IIB, M-theory : N=8

creditable guide toward quantum gravity

•UV finite? (consensus: up to 7 loops)



Our work

We want to reveal full moduli space structure of N=8 supergravity

•classifying vacua (Mink/AdS/dS)

•stability of vacua

‣
�+�
•embedding tensor formalism

•homogeneous scalar manifold E7(7)/SU(8)
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•an exhaustive list of SL(8,R)-type vacua  

•an analytic expression of full mass spectra

‣�"'�)�'�"!&�
•more realistic construction of string inflation

•extract universal features of gravity sector of string theory
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‣gauged supergravity

‣embedding tensor



N=8 ungauged supergravity

 Maximal (N=8) ungauged supergravity

‣unique multiplet: 28=128 bosons+128 fermions

Cremmer & Julia 78

graviton gravitino vector gaugino scalar

# of fields 1 8 28 56 70

dof 2 2x8=16 2x28=56 2x56=112 1x70

•obtained via T7 compactification of M-theory

•no scalar potential, no nonabelian gauge fields

•70 scalars parametrize E7(7)/SU(8)

‣N=8 is the maximal # of SUSYs for spin≦2

SL(8,R), the embedding tensor has to belong to 36 and/or 36′, on which we will concentrate in
the rest of the paper.

The scalar potential arises from the O(g2) corrections of supersymmetry transformations. In
terms of XM , it is given by [19]

V =
g2

672

(

XMN
RXPQ

SMMPMNQMRS + 7XMN
QXPQ

NMMP
)

, (2.7)

where MMN is a real and symmetric matrix with the inverse MMN and defined by

M = L · TL , MMN = (M)MN . (2.8)

Here L = L(φ) is the coset representative in the Sp(56,R) representation. From the higher dimen-
sional point of view, the four dimensional scalar potential encodes the internal geometry and the
flux contributions. For generic gaugings, the potential is unbounded both below and above, and
fails to have any extrema.

For later convenience, let us recapitulate some coset representations. Cremmer and Julia intro-
duced the Usp(56) representation, in which the diagonal element of E7(7) algebra is SU(8) [2]. In
the Usp(56) representation the coset representatives take the form,

L(φ)M
N = exp

(

0 φijkl

φijkl 0

)

, φijkl = φ[ijkl] = η(#φ̄)ijkl , (2.9)

where the underlined indices refer to 28 + 28 of SU(8), and η = ±1 corresponds to the chirality
of the spinor representation of SO(8) below. Here i, j, ... are 8 and 8̄ of SU(8), and are raised and
lowered via complex conjugation, as usual. The change of basis can be done via gamma matrices
in the real Weyl spinor representation of SO(8),

LM
N = SM

PLP
Q(S−1)Q

N , SM
N =

i

4
√
2

(

Γij
ab iΓijab

Γijab −iΓij
ab

)

, (2.10)

where (Γij)ab = (Γab)ij =: Γab
ij , and there is no need to distinguish their upper and lower indices.

In particular, we denote by V to describe the coset representative in a mixed basis,

VM
N = LM

P (S−1)P
N . (2.11)

2.2 Mass matrix

The seventy scalars parametrize the homogeneous (and moreover symmetric) coset spaceE7(7)/SU(8).
The homogeneity means that every point on the (Riemannian) manifold can be mapped into any
other point via a global transformation (isometry). In other words, the manifold admits the tran-
sitive group of motions.

What is important here is that the scalar potential is invariant under the simultaneous trans-
formations of the coset representative and of the embedding tensor. Indeed, the potential depends
on a single tensorial combination L−1Θ. To see this, let us define

Θ̃M
αtα := (L−1)M

NΘN
αL−1tαL . (2.12)

This is the analogue of T -tensor in the Sp(56,R) representation. In terms of Θ̃M
α, the potential (2.7)

can be expressed as

V =
g2

672
Θ̃M

αΘ̃N
β(δαβ + 7ηαβ) , (2.13)

– 4 –

coset representative: 56x56 matrix
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i,j,...= 8 of SU(8)



Gauged supergravity

 N=8 gauged supergravity a la embedding tensor formalism 

✓O(g): SUSY transformation rules for fermions

✓O(g2): scalar potential

✓O(g): mass terms for fermions

Gauging: enhances global symmetry G⊂E7(7) to local symmetry

XM: generators of G
t!: generators of E7(7)

"=1,..,133: adjoint of E7(7) 
M=1,..,56: fundamental of E7(7) 

(i) Gauge group G satisfies dimG≦28

•Consistency 

(ii) G must form a closed subgroup

(iii) SUSY

ΩMNΘM
αΘN

β = 0

ΘM
α ∈ 912 ⊂ 56× 133

deWit-Samtleben-Trigiante 03

#: Sp(56,R)⊃E7(7) metric

de Wit & Nicolai 81✓simplest ex: SO(8) gauging

∂µ → Dµ = ∂µ − gAµ
MXM . g: gauge coupling

": embedding tensor



Scalar potential

L=L($ijkl): coset rep. of E7(7)/SU(8)

CHAPTER 9. N = 8 GAUGED SUPERGRAVITY

このとき，

A1ij =
1

7
iΩMNQMk

iVN
kl , A2i

jkl = iΩMNPM
jklmVNim . (9.48)

SU(8)共変微分を次のように定義する
DµVM

ij = ∂µVM
ij −Qµkl

ijVM
kl − gAµ

PXPM
NVN

ij , (9.49)

ここでQµ は SU(8) 接続であり，

Qµij
kl = δ[i

[kQµj]
l] , Qµi

j = −Qµ
j
i , Qµi

i = 0 . (9.50)

ここで

ΩMNVMijDµVN
kl = 0 =⇒ Qµi

j =
2

3
i(VΛik∂µVΛjk − VΛ

ik∂µVΛ
jk)− gAµ

MQMi
j . (9.51)

同様に，SU(8)共変テンソルを

Pµijkl = iΩMNVMijDµVNkl , Pµ
ijkl =

η

24
εijklmnpqPµmnpq , (9.52)

とすると，次の関係式が成り立つ
Pµijkl = i(VΛij∂µV

Λ
kl − VΛ

ij∂µVΛkl)− gAµ
MPMijkl . (9.53)

Pµ はスカラーの運動項を定める．
無矛盾なゲージ化では 912に属するΘM

α は 2次の拘束条件 0 = ΩMNΘM
αΘN

β を満たす必要がある．
これは T テンソルを用いて次のように表せる
ΩMN = i

[
(V−1)ij

M (V−1)ijN − (V−1)ijM (V−1)ij
N
]

=⇒ T ij
M

NTijP
Q − TijM

NT ij
P
Q = 0 . (9.54)

これを様々な成分に射影することにより，T テンソルに対する 2次の条件式を得る．
T k

lijTn
mij − Tl

kijTm
nij = 0 , (9.55a)

T k
lijTmnpq

ij +
1

24
εmnpqrstuTl

kijT rstu
ij = 0 , (9.55b)

Tirst
vwT jrst

vw − 1

8
δjiTrstu

vwT rstu
vw = 0 , (9.55c)

Tijkr
vwTmnpr

vw − 9

4
δ[m[iTjk]rs

vwTnp]rs
vw +

1

16
δi[mδjnδ

k
p]Trstu

vwT rstu
vw = 0 . (9.55d)

9.2.2 ポテンシャル
ポテンシャルは T テンソルを用いて次のように表せる

V = g2
(

1

24
|A2i

jkl|2 − 3

4
|Aij

1 |2
)

. (9.56)

ここで 56× 56対称行列M = TM を次のように定義する
MMN := VM

ijVNij + VMijVN
ij , MMN = (M−1)MN = ΩMPΩNQMPQ . (9.57)

このとき，VM
ijVNij =

1
2 (MMN + iΩMN )，ΩMNΩPQ = 2δM [P δ

N
Q] および

PM
ijklPNijkl ±QMij

klQN
ij

kl = PM
ijklPNijkl ∓ 3

2QMj
iQMi

j , (9.58)

より，次の関係式が成立する
XMN

RXPQ
SMMPMNQMRS = MMN (2PM

ijklPNijkl − 3QMi
jQNj

i) ,

XMN
QXPQ

NMMP = MMN (2PM
ijklPNijkl + 3QMi

jQNj
i)

MMNPM
ijklPNijkl = 4|A2l

ijk|2 ,
MMNQNi

jQNj
i = −2|A2i

jkl|2 − 28|Aij
1 |2 . (9.59)

これらを合わせると，ポテンシャルはゲージ構造定数で定まる：

V =
g2

672

(
XMN

PXPQ
SMMPMNQMRS + 7XMN

QXPQ
NMMP

)
. (9.60)

47

Mink/AdS/dS ⇒ Einstein-70scalar system E7(7)/SU(8)

•we can move critical pts to origin of scalar mfd

-(!�"(!�����%" ����"*��!����")����!��!"!��!��%��(!��"��$ijkl

Dall’Agata-Inverso’11

At the origin, $ijkl=0, L($)=156 

∂ρV ∝ tρM
NΘM

αΘN
β(δαβ + 7ηαβ) +ΘM

αΘM
βfρβ

γδαγ

just solve a set of quadratic eqs. for "

+

combined with closure condition ΩMNΘM
αΘN

β = 0

‣homogeneity of scalar mfd E7(7)/SU(8)

‣V is invariant under



Dall’Agata-Inverso considered gaugings ⊂SL(8,R)⊂E7(7)

for which "∈912=36+36’+420+420’

4. Dyonic gaugings

We move on to the case where additional 36 charges are turned on,

Θab
c
d = δ[a

cθb]d , Θabc
d = δ[adξ

b]c , (4.1)

where θ and ξ are (possibly noninvertible) symmetric tensors. Since both electric and magnetic
charges are introduced, we shall refer to it as dyonic. The gauge generators are now given by

X[ab] =

(
X[ab][cd]

[ef ] 0
0 X[ab]

[cd]
[ef ]

)
, X [ab] =

(
X [ab]

[cd]
[ef ] 0

0 X [ab][cd]
[ef ]

)
, (4.2)

where

X[ab][cd]
[ef ] = δ[a

[eθb][cδd]
f ] , X[ab]

[cd]
[ef ] = −δ[a

[cθb][eδf ]
d]

X [ab]
[cd]

[ef ] = −δ[c
[aξb][eδd]

f ] , X [ab][cd]
[ef ] = δ[e

[aξb][cδf ]
d] . (4.3)

The value of the potential at the origin gives the cosmological constant,

Vc =
g2

8

[
1

4
Tr(θ2)− 1

8
Tr(θ)2 +

1

4
Tr(ξ2)− 1

8
Tr(ξ)2

]
. (4.4)

4.1 Vacua

The extremum condition boils down to [20]

2(θ2 − ξ2)− (θTrθ − ξTrξ) = 2aI8 , (4.5)

where a is an arbitrary real constant. The solution for the quadratic constraint is given by

ξ = cθ−1 (c ∈ R) , or ξθ = 0 . (4.6)

These cases will be discussed separately in the following.

(I) θ ∝ ξ−1. We start with the discussion for the case in which both θ and ξ are invertible. Letting

x :=
1

2
Tr(θ) , y :=

1

2
Tr(θ−1) , (4.7)

the stationary point condition (4.5) can be equivalently written as

θ4 − xθ3 − aθ2 + c2yθ − c2I8 = 0 . (4.8)

Since equation (4.8) is invariant under the similarity transformation θ → PθP−1, we can restrict
to diagonal θ. Moreover equations (4.4) and (4.8) are invariant under the rescaling θ → eαθ with
c → e2αc, g → e−αg (α ∈ R). Noticing that the embedding tensor arises together with the coupling
constant, we can achieve c = 1 without loss of generality.

Since θ obeys a quartic polynomial, it has four eigenvalues λi (i = 1, ..., 4) with degeneracy
ni(≥ 0),

θ = λ1In1 ⊕ λ2In2 ⊕ λ3In3 ⊕ λ4In4 ,
∑

i

ni = 8 . (4.9)

From (4.8) one can easily derive

x =
∑

i

λi , y = −
∑

i<j<k

λiλjλk , a = −
∑

i<j

λiλj ,
∏

i

λi = −1 . (4.10)
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SL(8,R) vacua

# Ggauge Gres Λ m2 (multipl.)

vi SO(2, 6) SO(2) × SO(6)

CSO(2, 0, 6) SO(2)
Mink 2(2), 12

(20)
, 0(48)

xii SO(4)× SO(2, 2)� T 16 SO(2)2× SO(4)
Mink 4(4), 2(12), 1(16), 0(38)

xiii SO(2)2 � T 20 SO(2)2

i SO(8)

iii SO(7, 1) SO(7) AdS 2(1),−4
5

(27)
,−2

5

(35)
, 0(7)

viii SO(7)� T 7

ii SO(8)

SO(6) AdS 2(2),−1(20),−1
4

(20)
, 0(28)

iv SO(7, 1)

ix SO(7)� T 7

x SO(6)× SO(1, 1)� T 12

v SO(7, 1)

xi SO(6)× SO(1, 1)� T 12
SO(5) AdS 2(3),−4

3

(14)
, 23

(5)
, 0(48)

vii SO(3, 5) SO(3) × SO(5) dS −2(1), 4(5), 2(30), 43
(14)

,−2
3

(5)
, 0(15)

Table 4: mass spectra and residual symmetries for the new vacua. Known solutions of

CSO(2, 0, 6) and SO(8) theories are given for reference. When Λ �= 0, masses are normalized

with respect to it.

constant of a given vacuum for a specific gauging has been fixed, other vacua will keep the

same normalization with respect to that only for fixed combinations of the various rescalings,

which, however, generically depend on the gauging. For instance, in addition to the vacua

in Table 3, we also find an SO(4,4) vacuum in this class, whose cosmological constant can

be normalized to the same value as the one of the vacuum obtained with only θ �= 0.

In fact we can show that this new vacuum constructed with both θ �= 0 and ξ �= 0 is

equivalent to the previous one. This can be done by performing a symplectic rotation of a

form analogous to the one used for the SO(8) gauging, namely (4.19). The relevant matrix

can be constructed using a real representation for the Γab
AB matrices, with (ΓA)

ab and (Γa)AB

elements in Cliff(4,4), satisfying self-duality conditions (4.18) where the indices are raised

and lowered using θ. Unfortunately, it is not easy to envisage the explicit form of a similar

transformation for the other cases, where the corresponding Γ matrices cannot be chosen

to be real and the transformation itself must include a non-compact element of E7(7). This

is the reason why we simply decided to fix c = 1 in all the remaining examples and report
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SL(8,R) vacua

We can list all possible SL(8,R) vacua by 
obtaining all 8x8 matrices (%,&) satisfying

4. Dyonic gaugings

We move on to the case where additional 36 charges are turned on,

Θab
c
d = δ[a

cθb]d , Θabc
d = δ[adξ

b]c , (4.1)

where θ and ξ are (possibly noninvertible) symmetric tensors. Since both electric and magnetic
charges are introduced, we shall refer to it as dyonic. The gauge generators are now given by

X[ab] =

(
X[ab][cd]

[ef ] 0
0 X[ab]

[cd]
[ef ]

)
, X [ab] =

(
X [ab]

[cd]
[ef ] 0

0 X [ab][cd]
[ef ]

)
, (4.2)

where

X[ab][cd]
[ef ] = δ[a

[eθb][cδd]
f ] , X[ab]

[cd]
[ef ] = −δ[a

[cθb][eδf ]
d]

X [ab]
[cd]

[ef ] = −δ[c
[aξb][eδd]

f ] , X [ab][cd]
[ef ] = δ[e

[aξb][cδf ]
d] . (4.3)

The value of the potential at the origin gives the cosmological constant,

Vc =
g2

8

[
1

4
Tr(θ2)− 1

8
Tr(θ)2 +

1

4
Tr(ξ2)− 1

8
Tr(ξ)2

]
. (4.4)

4.1 Vacua

The extremum condition boils down to [20]

2(θ2 − ξ2)− (θTrθ − ξTrξ) = 2aI8 , (4.5)

where a is an arbitrary real constant. The solution for the quadratic constraint is given by

ξ = cθ−1 (c ∈ R) , or ξθ = 0 . (4.6)

These cases will be discussed separately in the following.

(I) θ ∝ ξ−1. We start with the discussion for the case in which both θ and ξ are invertible. Letting

x :=
1

2
Tr(θ) , y :=

1

2
Tr(θ−1) , (4.7)

the stationary point condition (4.5) can be equivalently written as

θ4 − xθ3 − aθ2 + c2yθ − c2I8 = 0 . (4.8)

Since equation (4.8) is invariant under the similarity transformation θ → PθP−1, we can restrict
to diagonal θ. Moreover equations (4.4) and (4.8) are invariant under the rescaling θ → eαθ with
c → e2αc, g → e−αg (α ∈ R). Noticing that the embedding tensor arises together with the coupling
constant, we can achieve c = 1 without loss of generality.

Since θ obeys a quartic polynomial, it has four eigenvalues λi (i = 1, ..., 4) with degeneracy
ni(≥ 0),

θ = λ1In1 ⊕ λ2In2 ⊕ λ3In3 ⊕ λ4In4 ,
∑

i

ni = 8 . (4.9)

From (4.8) one can easily derive

x =
∑

i

λi , y = −
∑

i<j<k

λiλjλk , a = −
∑

i<j

λiλj ,
∏

i

λi = −1 . (4.10)
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a, c : constants

•SL(8,R) vacua are exhausted by list of Dall’agata-Inverso

Gauging Greg Λ m2
S m2

U

SO(4, 4) SO(4)× SO(4) dS −2(×1), 2(×18), 0(×16) 2(×18), 1(×16),−2(×1)

SO(5, 3) SO(5)× SO(3) dS −2(×1),
4
3 (×14)

, 4(×5), 0(×15) 2(×30), − 2
3 (×5)

SO(8)

SO(7, 1) SO(7) AdS 2(×1), − 4
5 (×27)

, 0(×7) − 2
5 (×35)

SO(7)! T7

SO(8)

SO(6) AdS −1(×20), 2(×2), 0(×13) 0(×15), − 1
4 (×20)

SO(7, 1)

SO(7)! T7

SO(6)× SO(1, 1)! T12

SO(7, 1)
SO(5) AdS − 4

3 (×14)
, 2(×3), 0(×18)

2
3 (×5)

, 0(×30)
SO(6)× SO(1, 1)! T12

SO(6, 2) SO(2)4 Mink. Eq. (4.54) Eq. (4.55)

SO(4)× SO(2, 2)! T16 SO(2)4 Mink. Eq. (4.68) Eq. (4.69)

SO(2)× SO(2)! T20 SO(2)2 Mink. Eq. (4.70) Eq. (4.71)

Table 2: Mass spectrum for dyonic gaugings. Except for the Minkowski vacua, mass eigenvalues are

normalized by the absolute value of cosmological constant. Supersymmetries are completely broken.

vacua, due to the restrictive property of maximal supergravity. In particular, the result of this
vacuum search can have significant implications to the construction of inflationary universe models
on the base of string/M theory, because the maximal gauged supergravity may describe the gravity
sector very well, including non-perturbative effects in the 10/11-dimensional framework. In addition
it is also useful for the phenomenological applications to the condensed matter physics.

Utilizing the fact that the scalar fields parametrize the homogeneous space, we can analyze the
70 scalar mass spectrum at the origin of scalar space as argued in [20]. Specializing to the gaugings
contained in SL(8,R), we were able to enumerate all the possible vacua. We also developed a new
formulation which allows us to obtain the analytic expression of mass spectra in terms of eigenvalues
of the embedding tensor. We established an interesting structure about the moduli space of vacua:
when the cosmological constant is nonvanishing, the mass spectrum is only sensitive to the residual
gauge symmetry at the vacua. Namely, the mass spectra have to be coincident among the different
theories as long as their residual gauge symmetries are identical. This resolved the issue which
remained open in [20].

In some cases of dyonic gaugings, we are left with a deformation parameter s. It turns out
that the mass spectrum is nevertheless insensitive to the parameter s in units of the cosmological
constant. This means that SO(4, 4) and SO(5, 3) dS maxima do not provide sufficient e-foldings
in the standard potential-driven inflation scenario even in the deformed theory, since the slow-roll
parameter η is of order unity. We can also verify that the fraction of residual supersymmetries is
not dependent on the deformation parameter, i.e., all vacua except the maximally supersymmetric
AdS totally break supersymmetries.

We have also shown that the generic Minkowski vacua found in this paper do not have stable
mass spectra unless the remaining continuous parameters are finely tuned. This aspect seems a
new feature unnoticed in the literature.

The obvious next step is to explore the vacuum classifications for gaugings contained in other
subgroup of E7(7), such as E6(6) and SU∗(8). We believe that the techniques developed in this paper
could be used in other frames. It is interesting to see whether the characteristic features exposed
here are universal, i.e., whether the mass spectrum is insensitive to the deformation parameter and
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a, c : constants

•SL(8,R) vacua are exhausted by list of Dall’agata-Inverso

•For some vacua (#!0), a single parameter remains

•Minkowski vacua are parametrized by continuous parameters

e.g., dS vacua with SO(4,4)!SO(4)xSO(4) gauging

implying 1parameter deformation of the theory

possible and the (4, 0, 3, 1), (3, 1, 3, 1) types have no fixed points. Equation (4.13) is now solved to
give λ1 = −λ3 ≡ λ ∈ R. This solution corresponds to the SO(4, 4) dS vacua,

θ = λI4 ⊕ (−λ)I4 , V =
g2

4

(

λ2 + λ−2
)

, detθ = λ8 > 0 . (4.17)

At the vacua, the noncompact gauge symmetry is spontaneously broken to SO(4)× SO(4).

Up to this point, we are left with a single parameter λ. Usually we set detθ = ±1, giving
λ = 1 and V = g2/2. Previous studies which did not employ the embedding tensor formalism
have imposed this relation, so any particular attention has been paid to this freedom. However,
it appears that this remaining freedom implies that we have a one-parameter family of SO(4, 4)
deformed theories. This is in sharp contrast with the case (i), for which detθ = 1 is always fulfilled.
Now detθ = ±1 is not satisfied, hence it cannot be transformed by the SL(8,R) action to detθ̃ = ±1,
implying the deformation of the theory.

Although it is important to show which parameter region corresponds to the equivalent theories,
this issue is in general difficult and beyond the scope of the present article.4 Hence, we will
simply specify the allowed range of deformation parameter. However, as far as the stability issue is
concerned, the mass spectrum is nevertheless insensitive to the deformation parameter as we will
prove in the next subsection.

(III) p3 = p4(&= 0). We next discuss the p3 = p4 case, viz, (n1, n2, n3, n4) = (8, 0, 0, 0), (7, 1, 0, 0),
(5, 3, 0, 0), (6, 0, 1, 1) and (5, 1, 1, 1). We take the plus sign in (4.14) and (4.15), the solution of
which can be most conveniently parametrized as

λ1 =

√

−
s(p2s2 + p1)

p1s2 + p2
, λ2 =

s

λ1
, (4.18)

where s(&= 0,±
√

−p2/p1,±
√

−p1/p2) is a real parameter (it leads to the contradiction if s is
complex). In this case, the cosmological constant (4.12) reduces to

Vc = −
g2p1p2(p1 + p2)(1 + s2)3

16s(p1s2 + p2)(p2s2 + p1)
. (4.19)

We now take a closer look at each vacuum.

(8,0,0,0): The θ tensor and the potential are given by

θ = λI8 , Vc = −
3g2(1 + λ4)

4λ2
. (4.20)

λ ∈ R is a deformation parameter. If we require detθ = 1, we have λ = 1 as usual. This is the
well-known maximally supersymmetric AdS vacua at which all (pseudo)scalars vanish.

(7,1,0,0): The θ tensor and the potential are given by

θ = λI7 ⊕
s

λ
I1 , λ =

√

s(s2 − 5)

5s2 − 1
,

V = −
5g2(1 + s2)3

4s(−5 + s2)(−1 + 5s2)
, detθ =

s4(−5 + s2)3

(−1 + 5s2)3
. (4.21)

4Recently it has been conjectured that the different theories may be distinguished according to the eigenvalues of
tensor classifier constructed from a quartic invariant of E7(7), in analogy with the black hole geometry [1].
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c.f.  Dall’Agata-Inverso-Trigiante ’12 for SO(8)



SL(8,R) vacua

Mass spectra are analytically determined Kodama-MN ‘12

where

Tr(tαt
†
β) = δαβ , Tr(tαtβ) = ηαβ . (2.14)

In this form, one notices that the potential depends (quadratically) only on Θ̃M
α, as we desired

to show. Since any point on the scalar manifold can be mapped to any other point, the optimal
setup is to move the critical point to the origin (φijkl = 0), where L(φ) = I56. At the origin, the
extremum condition amounts to the quadratic conditions on ΘM

α.
To take the first variation of the potential, we first note that every variation of the coset repre-

sentative can be written in a form of an E7(7) transformation from the right. In the Sp(56,R) rep-
resentation we have

∂ρL = −Ltρ , (2.15)

where index ρ refers exclusively to 70 noncompact elements of e7(7). This implies

∂ρL
−1 = tρL

−1 , ∂ρM = −L(tρ +
Ttρ)

TL , ∂ρM
−1 = (TL)−1(tρ +

Ttρ)L
−1 . (2.16)

Because of the relation

∂ρ(Θ̃M
αtαN

P ) = tρM
QΘ̃Q

αtαN
P + Θ̃M

αfρα
γtγN

P , (2.17)

the first derivative of V is obtained as

∂ρV =
g2

336

[
tρM

N Θ̃M
αΘ̃N

β(δαβ + 7ηαβ) + Θ̃M
αΘ̃M

βfρβ
γδαγ

]
. (2.18)

At the origin, ∂ρV = 0 imposes a quadratic restriction upon ΘM
α, which should be combined to

be solved with (2.3) and (2.4). It turns out that we can scan the critical points and underlying
gaugings at the same time, as demonstrated in [20].

We can furthermore discuss the mass spectrum at the same time. By virtue of (2.15)–(2.18),
we can likewise obtain the second derivatives of the potential2

∂σ∂ρV =
g2

336

[
(tρ +

Ttρ)M
N tσM

P Θ̃P
αΘ̃N

β(δαβ + 7ηαβ)

+ Θ̃M
αΘ̃M

β(fρα
γfσβ

δδγδ + (fρfσ)α
γδβγ)

+ 2(tρM
Nfσα

γ + tσM
Nfρα

γ)δβγΘ̃M
(αΘ̃N

β)
]
. (2.19)

In order to reduce (2.19) to a more tractable form, we rely on the observation [Ttα, tβ ] ∈ e7(7),
which suggests that there exist constants cαβγ such that [Ttα, tβ ] = cαβγtγ . Applying the Jacobi
identity to (Ttα, tβ , tγ), we have

c(ρσ)
γfγα

δδβδ = −cβ(ρ
γcσ)α

γ − fα(ρ
γfσ)β

δδγδ . (2.20)

Using this relation, a simple computation shows that (2.19) can be cast into

∂ρ∂σV = (M2)ρσ +
1

2
c(ρσ)

γ∂γV , (2.21)

where M2 describes the mass matrix at the extrema,

(M2)ρσ :=
g2

168

[
(s(ρsσ))M

NTr(XM
TXN + 7XMXN ) + 2(s(ρ)M

NTr(sσ)[X(M , TXN)])

−Tr([s(ρ, XM ][sσ),
TXM ])

]
. (2.22)

Here we have defined 56× 56 symmetric matrices,

sρ :=
1

2
(tρ +

Ttρ) . (2.23)

2This expression differs from that obtained in [20], which seems to have a typo.
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Sab:35 scalars

Uabcd:35 pseudoscalars

4. Dyonic gaugings

We move on to the case where additional 36 charges are turned on,

Θab
c
d = δ[a

cθb]d , Θabc
d = δ[adξ

b]c , (4.1)

where θ and ξ are (possibly noninvertible) symmetric tensors. Since both electric and magnetic
charges are introduced, we shall refer to it as dyonic. The gauge generators are now given by

X[ab] =

(
X[ab][cd]

[ef ] 0
0 X[ab]

[cd]
[ef ]

)
, X [ab] =

(
X [ab]

[cd]
[ef ] 0

0 X [ab][cd]
[ef ]

)
, (4.2)

where

X[ab][cd]
[ef ] = δ[a

[eθb][cδd]
f ] , X[ab]

[cd]
[ef ] = −δ[a

[cθb][eδf ]
d]

X [ab]
[cd]

[ef ] = −δ[c
[aξb][eδd]

f ] , X [ab][cd]
[ef ] = δ[e

[aξb][cδf ]
d] . (4.3)

The value of the potential at the origin gives the cosmological constant,

Vc =
g2

8

[
1

4
Tr(θ2)− 1

8
Tr(θ)2 +

1

4
Tr(ξ2)− 1

8
Tr(ξ)2

]
. (4.4)

4.1 Vacua

The extremum condition boils down to [20]

2(θ2 − ξ2)− (θTrθ − ξTrξ) = 2aI8 , (4.5)

where a is an arbitrary real constant. The solution for the quadratic constraint is given by

ξ = cθ−1 (c ∈ R) , or ξθ = 0 . (4.6)

These cases will be discussed separately in the following.

(I) θ ∝ ξ−1. We start with the discussion for the case in which both θ and ξ are invertible. Letting

x :=
1

2
Tr(θ) , y :=

1

2
Tr(θ−1) , (4.7)

the stationary point condition (4.5) can be equivalently written as

θ4 − xθ3 − aθ2 + c2yθ − c2I8 = 0 . (4.8)

Since equation (4.8) is invariant under the similarity transformation θ → PθP−1, we can restrict
to diagonal θ. Moreover equations (4.4) and (4.8) are invariant under the rescaling θ → eαθ with
c → e2αc, g → e−αg (α ∈ R). Noticing that the embedding tensor arises together with the coupling
constant, we can achieve c = 1 without loss of generality.

Since θ obeys a quartic polynomial, it has four eigenvalues λi (i = 1, ..., 4) with degeneracy
ni(≥ 0),

θ = λ1In1 ⊕ λ2In2 ⊕ λ3In3 ⊕ λ4In4 ,
∑

i

ni = 8 . (4.9)

From (4.8) one can easily derive

x =
∑

i

λi , y = −
∑

i<j<k

λiλjλk , a = −
∑

i<j

λiλj ,
∏

i

λi = −1 . (4.10)
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to diagonal θ. Moreover equations (4.4) and (4.8) are invariant under the rescaling θ → eαθ with
c → e2αc, g → e−αg (α ∈ R). Noticing that the embedding tensor arises together with the coupling
constant, we can achieve c = 1 without loss of generality.

Since θ obeys a quartic polynomial, it has four eigenvalues λi (i = 1, ..., 4) with degeneracy
ni(≥ 0),

θ = λ1In1 ⊕ λ2In2 ⊕ λ3In3 ⊕ λ4In4 ,
∑

i

ni = 8 . (4.9)

From (4.8) one can easily derive

x =
∑

i

λi , y = −
∑

i<j<k

λiλjλk , a = −
∑

i<j

λiλj ,
∏

i

λi = −1 . (4.10)
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sρ =
1

2
(tρ +

Ttρ) =

�
2Sρ ∧ I Uρ

�Uρ −2Sρ ∧ I

�

3.2 Mass spectrum

We now move on to the main part of this paper and determine analytically the full mass spectrum
of 70 scalars. Let sρ = (tρ + T tρ)/2 decompose into

sρ =

(
sρ[ab]

[cd] sρ[abcd]
sρ[abcd] sρ[cd][ab]

)
, (3.9)

where

sρ[ab]
[cd] = −sρ

[cd]
[ab] = 2(Sρ)[a

[cδb]
d] , (sρ)[abcd] = (sρ)

[abcd] = (Uρ)[abcd] . (3.10)

Each of real tensors (S,U) has 35 components and satisfies

S = TS , Tr(S) = 0 , U = "U . (3.11)

Substituting (3.2) and (3.9) into (2.22), we are led to

M2 = M2
(1)(θ) +M2

(2)(θ) , (3.12)

with

M2
(1)(θ) =

1

8
g2

[
−Tr(θ)Tr(S2θ)− [Tr(θS)]2 + 2Tr(S2θ2) + 2Tr(SθSθ)

]
, (3.13)

M2
(2)(θ) =

1

8
g2

[
−U2

[ab][cd]θacθbd +
1

24
U · UTr(θ2)

]
. (3.14)

Here we have introduced the abbreviation

U · U = UabcdUabcd , (U2)[ab][cd] = UabefUcdef , (U2)ab = UacdeUbcde =
1

8
U · Uδab , (3.15)

where the final expression follows from the self-duality of U .
We now split the matrix S into n1 and n2 blocks

S =

(
A11 A12
TA12 A22

)
, θ =

(
λ1In1

λ2In2

)
, (3.16)

and define

A11 =
1

n1
Tr(A11)In1 + Â1 , A22 = − 1

n2
Tr(A11)In2 + Â2 , (3.17)

where Â1 and Â2 are trace-free parts of A11 and A22, respectively.
In order to achieve the correct mass spectrum we need to canonically normalize the scalar

kinetic function. According to (2.10), the fluctuations of scalar fields δφijkl are given by

2S[a
[cδb]

d] + iUabcd =
1

16
Γij
abΓ

kl
cdδφijkl , (3.18)

Then the scalar kinetic term reads

1

12
PµijklPµijkl =

1

12
|∂µφijkl|2 =

1

2
Tr((∂S)2) +

1

12
∂U · ∂U . (3.19)

It follows that

1

2
Tr((∂S)2) =

1

2

[
8

n1n2
(∂TrA11)

2 +Tr((∂Â1)
2) + Tr((∂Â2)

2) + 2Tr(∂TA12∂A12)

]
. (3.20)
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CHAPTER 9. N = 8 GAUGED SUPERGRAVITY

ゲージ群 残存ゲージ群 v = 4g−2V θ SUSY m2/|Vc|
SO(4, 4) SO(4)× SO(4) 1 14 ⊕ (−14) none 0(16), 1(16), 2(36),−2(2)
SO(5, 3) SO(5)× SO(3) 31/4 35/813 ⊕ (−3−3/8)15 none 0(15), 4(5),−2(1), 2(30),

4
3 (14)

,− 2
3 (5)

SO(8) SO(7) −53/4 57/811 ⊕ 5−1/817 none 0(7), 2(1),− 4
5 (27)

,− 2
5 (35)

SO(8) SO(8) −3 18 N = 8 − 2
3 (70)

CSO(2, 6) SO(2)× SO(4) 0 λ12 ⊕ 06 none 0(48),
1
2 (20)

, 2(2)

Table 9.1: Critical points for electric gaugings．

λi ∈ Rとなるのは表 9.1の場合に限られる．また，detθ = 0のときは

n1 = 2 =⇒ V = 0 . (9.95)

次にモジュライの質量行列を陽に求める．sα = (tα + T tα)/2 を次のように分解する：

s =

(
s[ab]

[cd] s[abcd]

s[abcd] s[cd][ab]

)
. (9.96)

ここで

sα[ab]
[cd] = −sα

[cd]
[ab] = 2(Sα)[a

[cδb]
d] , (sα)[abcd] = (sα)

[abcd] = (Uα)[abcd] . (9.97)

(S,U)はそれぞれ 35成分を持つ実テンソルである．

S = TS , Tr(S) = 0 , U = $U . (9.98)

このとき，

(s2)M
NTr(XM

TXN + 7XMXN ) =− 21Tr(θ)Tr(S2θ)− 21[Tr(Sθ)]2 + 3
2Tr(θ

2)Tr(S2) + 27Tr(S2θ2)

+ 21Tr(SθSθ) + 3(U2)ab(θ
2)ab − 21U2

abcdθacθbd , (9.99a)

2sM
NTr(s[X(M , TXN)]) =− 3Tr(θ2)Tr(S2) + 6Tr(S2θ2) + 18Tr(SθSθ) , (9.99b)

−Tr([s,XM ][s, TXM ]) = 3
2Tr(θ

2)Tr(S2) + 9Tr(S2θ2) + 3Tr(SθSθ) + 1
2U · UTr(θ2) .

(9.99c)

ここで

U · U = UabcdUabcd , (U2)[ab][cd] = UabefUcdef , (U2)ab = UacdeUbcde =
1
8U · Uδab . (9.100)

(M2)ρσ = (M2
(1))ρσ + (M2

(2))ρσ , (9.101)

M2
(1) =

1
8g

2
[
−Tr(θ)Tr(S2θ)− [Tr(θS)]2 + 2Tr(S2θ2) + 2Tr(SθSθ)

]
,

M2
(2) =

1
8g

2
[
−U2

[ab][cd]θacθbd +
1
24U · UTr(θ2)

]
. (9.102)

今，場のゆらぎは

(2S ∧ 1+ iU)abcd = 1
16Γ

ij
abΓ

kl
cdδφijkl , (9.103)

とすると，
1

12
PµijklP

µijkl =
1

12
|∂µφijkl|2 =

1

2
Tr((∂S)2) +

1

12
∂U · ∂U . (9.104)

ここで行列 S を n1 + n2 分解する：

S =

(
A B
TB D

)
, θ =

(
λ1In1

λ2In2

)
. (9.105)
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e.g. electric gaugings (&=0) & Vc !0: cosmological constant

decompose into
SL(8,R) irrep



SL(8,R) vacua

Mass spectra for #!0 vacua Kodama-MN ‘12

With reference to (3.13) and (3.16), the mass matrix M2
(1) can be expressed in terms of fields

(A11, Â1, Â2, A12). The canonical mass eigenvalues can be read off in such a way that each coefficient
of these fields agrees with (3.20), thereby

M2
(1) =

8

n1n2
m2

0(1,1)Tr(A11)
2 +m2

1(N1,1)Tr(Â
2
1) +m2

2(1,N2)Tr(Â
2
2) + 2m2

∗(n1,n2)Tr(
TA12A12) ,

(3.21)

where

N1 =
1

2
(n1 − 1)(n1 + 2) , N2 =

1

2
(n2 − 1)(n2 + 2) , (3.22)

and

m2
0(1,1) =

g2

64
[2n2(2− n1)λ

2
1 + 2n1(2− n2)λ

2
2 − (n1 − n2)

2λ1λ2] , (3.23a)

m2
1(N1,1) =

g2

8
λ1[(4− n1)λ1 − n2λ2] , (3.23b)

m2
2(1,N2) =

g2

8
λ2[(4− n2)λ2 − n1λ2] , (3.23c)

m2
∗(n1,n2) =

g2

16
(λ1 + λ2)[(2− n1)λ1 + (2− n2)λ2] = 0 . (3.23d)

At the last equality we have used the stationary point condition (3.7). It follows that the A12 field
is always massless. Boldface letters in the subscript denote the representations of SO(n1)×SO(n2).
This notation manifests multiplicities explicitly, i.e., m2

(k1,k2)
represents the mass spectrum for fields

with k1k2 degeneracies. Note that fluctuations of Tr(A11) and A12 exist for n1n2 > 0, while Â1

(Â2) exists for n1 > 1 (n2 > 1).
When n1 #= 2, 6, the cosmological constant is nonvanishing. So we can normalize the mass

spectra in a unit of the cosmological constant (3.8) and obtain a more comprehensive form

m2
0(1,1) = −2Vc , m2

1(N1,1) =
4Vc

n1 − 2
, m2

2(1,N2) =
4Vc

n2 − 2
. (3.24)

Whereas, for n1 = 2 we have

m2
0(1,1) = m2

2(1,20) = m2
∗(2,6) = 0 , m2

1(2,1) =
1

4
g2λ2

1 . (3.25)

The n1 = 6 case can be deduced similarly.
Let us turn to determine the mass spectrum of pseudoscalars U . We decompose the eight

indices into n1 and n2 blocks,

S1 = {1, ..., n1} , S2 = {n1 + 1, ..., n1 + n2} . (3.26)

Let " be a non-negative integer taking values in the range 0 ≤ " ≤ 4, 0 ≤ 4 − " ≤ n2. Then the
basis of antisymmetric four-form is labeled by pairs I1, I2, where I1 (I2) is a set of " (4− ") indices
belonging to S1 (S2). For any four-form Zabcd, we find

θr [aθ
s
bZcd]rs =

1

12

[
"("− 1)λ2

1 + 2"(4− ")λ1λ2 + (4− ")(3− ")λ2
2

]
Zabcd , (3.27)

from which we are led to

(1 + $)θr [aθ
s
bUcd]rs = 2µ!Uabcd , (3.28)
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(A11, Â1, Â2, A12). The canonical mass eigenvalues can be read off in such a way that each coefficient
of these fields agrees with (3.20), thereby

M2
(1) =

8

n1n2
m2

0(1,1)Tr(A11)
2 +m2

1(N1,1)Tr(Â
2
1) +m2

2(1,N2)Tr(Â
2
2) + 2m2

∗(n1,n2)Tr(
TA12A12) ,

(3.21)

where

N1 =
1

2
(n1 − 1)(n1 + 2) , N2 =

1

2
(n2 − 1)(n2 + 2) , (3.22)

and

m2
0(1,1) =

g2

64
[2n2(2− n1)λ

2
1 + 2n1(2− n2)λ

2
2 − (n1 − n2)

2λ1λ2] , (3.23a)

m2
1(N1,1) =

g2

8
λ1[(4− n1)λ1 − n2λ2] , (3.23b)

m2
2(1,N2) =

g2

8
λ2[(4− n2)λ2 − n1λ2] , (3.23c)

m2
∗(n1,n2) =

g2

16
(λ1 + λ2)[(2− n1)λ1 + (2− n2)λ2] = 0 . (3.23d)

At the last equality we have used the stationary point condition (3.7). It follows that the A12 field
is always massless. Boldface letters in the subscript denote the representations of SO(n1)×SO(n2).
This notation manifests multiplicities explicitly, i.e., m2

(k1,k2)
represents the mass spectrum for fields

with k1k2 degeneracies. Note that fluctuations of Tr(A11) and A12 exist for n1n2 > 0, while Â1

(Â2) exists for n1 > 1 (n2 > 1).
When n1 #= 2, 6, the cosmological constant is nonvanishing. So we can normalize the mass

spectra in a unit of the cosmological constant (3.8) and obtain a more comprehensive form

m2
0(1,1) = −2Vc , m2

1(N1,1) =
4Vc

n1 − 2
, m2

2(1,N2) =
4Vc

n2 − 2
. (3.24)

Whereas, for n1 = 2 we have

m2
0(1,1) = m2

2(1,20) = m2
∗(2,6) = 0 , m2

1(2,1) =
1

4
g2λ2

1 . (3.25)

The n1 = 6 case can be deduced similarly.
Let us turn to determine the mass spectrum of pseudoscalars U . We decompose the eight

indices into n1 and n2 blocks,

S1 = {1, ..., n1} , S2 = {n1 + 1, ..., n1 + n2} . (3.26)

Let " be a non-negative integer taking values in the range 0 ≤ " ≤ 4, 0 ≤ 4 − " ≤ n2. Then the
basis of antisymmetric four-form is labeled by pairs I1, I2, where I1 (I2) is a set of " (4− ") indices
belonging to S1 (S2). For any four-form Zabcd, we find

θr [aθ
s
bZcd]rs =

1

12

[
"("− 1)λ2

1 + 2"(4− ")λ1λ2 + (4− ")(3− ")λ2
2

]
Zabcd , (3.27)

from which we are led to

(1 + $)θr [aθ
s
bUcd]rs = 2µ!Uabcd , (3.28)
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CHAPTER 9. N = 8 GAUGED SUPERGRAVITY

質量固有値は

m2
U [!] =

g2

32

[
{n1 − !(!− 1)− (n1 − !)(n1 − !− 1)}λ2

1 − 2{!(4− !) + (n1 − !)(4 + !− n1)}λ1λ2

+{n2 − (4− !)(3− !)− (4 + !− n1)(3 + !− n1)}λ2
2

]
. (9.117)

n1 "= 2, 6のとき停留点のポテンシャル値で割ると，

m2
U [!] =

2[2!2 − 2n1!+ (n1 − 2)2]

(n1 − 6)(n1 − 2)
Vc . (9.118)

n1 = 2のとき

m2
U [!=1](×20) =

1
16g

2λ2
1 : (2,20)+ , m2

U [!=2](×15) = 0 : (1,15) . (9.119)

9.3.2 Dyonic gauging

埋め込みテンソルを次のように採る

Θab
c
d = δ[a

cθb]d , Θabc
d = δd

[aξb]c . (9.120)

X テンソルは

X[ab] =

(
X[ab][cd]

[ef ] 0
0 X[ab]

[cd]
[ef ]

)
, X [ab] =

(
X [ab]

[cd]
[ef ] 0

0 X [ab][cd]
[ef ]

)
, (9.121)

ここで

X[ab][cd]
[ef ] = δ[a

[eθb][cδd]
f ] , X[ab]

[cd]
[ef ] = −δ[a

[cθb][eδf ]
d]

X [ab]
[cd]

[ef ] = −δ[c
[aξb][eδd]

f ] , X [ab][cd]
[ef ] = δ[e

[aξb][cδf ]
d] (9.122)

原点におけるポテンシャルの値は

V =
g2

4

[
1

8
Tr(θ2)− 1

16
Tr(θ)2 +

1

8
Tr(ξ2)− 1

16
Tr(ξ)2

]
. (9.123)

このとき 2次の拘束条件は

0 = ΩMNΘM
αΘN

β = Θab
αΘab

β −Θab
αΘabβ =⇒ 0 = δcf (θξ)d

e − δed(θξ)f
c =⇒ θξ ∝ I8 . (9.124)

埋め込みテンソルの 2次の拘束条件の解は

(I) : ξ = cθ−1 , c ∈ R , (II) : ξθ = 0 . (9.125)

停留点条件

2(θ2 − ξ2)− (θTrθ − ξTrξ) = 2a18×8 . (9.126)

aは比例定数．

(I) ξ = cθ−1.
ここで

x := 1
2Tr(θ) , y := 1

2Tr(θ
−1) , (9.127)

とおくと，(9.126)は

θ4 − xθ3 − aθ2 + c2yθ − c218×8 = 0 . (9.128)
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Mass of pseudoscalars can be obtained similarly

l: labeling index
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SO(n1,n2)! SO(n1)xSO(n2) θ =

�
λ1In1 0
0 λ2In2

�
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N1 = 1
2 (n1 − 1)(n1 + 2)m2

(p,q) : (p,q) irrp of SO(n1)xSO(n2)



SL(8,R) vacua

Minkowski vacua

where !i’s are nonnegative integers. The multiplicities belonging to the same "! are given by

n1C!1 × · · ·× nmC!m : !1 > n1/2 or !1 = n1/2, !2 > n2/2 or, ... ,

!1 = n1/2, !2 = n2/2, ..., !m > nm/2 . (4.48a)

1

2
n1Cn1/2 × · · ·× nmCnm/2 : !i = ni/2 (i = 1, ...,m) . (4.48b)

We can easily verify

(1 + #)(θr [aθ
s
b + κr

[aκ
s
b)Ucd]rs = 2µ"!Uabcd , (4.49)

where

µ"! =
1

24




(
∑

i

!iλi

)2

+

(
∑

i

(ni − !i)λi

)2

+

(
∑

i

!iκi

)2

+

(
∑

i

(ni − !i)κi

)2

−
∑

i

ni(λ
2
i + κ2

i )



 .

(4.50)

Hence we obtain the mass eigenvalues

M2
(2) =

1

6
m2

["!]
U · U , (4.51)

with

m2
["!]

=
g2

32



2
∑

i

ni(λ
2
i + κ2

i )−
(
∑

i

!iλi

)2

−
(
∑

i

(ni − !i)λi

)2

−
(
∑

i

!iκi

)2

−
(
∑

i

(ni − !i)κi

)2


 , (4.52)

which is specified by nonnegative integers !i satisfying

0 ≤ !i ≤ ni ,
m∑

i

!i = 4 . (4.53)

Since the kinetic term for scalars is given by (3.19), m2
["!]

denotes the canonical mass eigenvalues.

We are now armed with necessary tools to demonstrate mass spectra in the dyonic case.

(I) θ ∝ ξ−1. Let us begin with the θ ∝ ξ−1 case.

(i) ni = 2. This case corresponds to the Minkowski vacua of SO(6, 2) gauging, which spontaneously
breaks down to SO(2) × SO(2) × SO(2) × SO(2). Taking the θ tensor as (4.13), equations (4.43)
and (4.46) yield

m2
(1,1,1)(×3) = 0 , m2

∗(×24) = 0 : (2,2,1,1) + · · · ,

m2
i(×8) =

g2

16r2s2t2
×






4st(r − s)(r − t)(1 + r2st) , : (2,1,1,1)
4rt(s− r)(s− t)(1 + rs2t) , : (1,2,1,1)
4rs(r − t)(s− t)(1 + rst2) , : (1,1,2,1)
4(1 + r2st)(1 + rs2t)(1 + rst2) , : (1,1,1,2)

. (4.54)
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SO(6,2), SO(4)xSO(2,2) T16, SO(2)xSO(2) T20 admit Minkowski vacua

e.g., 35 scalar mass eigenvalues for SO(6,2)!SO(2)4 gauging

Unless (r,s,t) are pairwise equal, m2 will be negative
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Hence λi’s satisfying the following relation correspond to the critical point,

∑

i

(ni − 2)λi = 0 ,
∑

i

ni − 2

λi
= 0 ,

∏

i

λi = −1 (4.11)

Substitution of (4.11) into (4.4) yields

Vc =
g2

32

∑

i

(ni − 2)(λ2
i + λ−2

i ) . (4.12)

Therefore neither the ordering of λi nor the overall sign flip λi → −λi affect the scalar potential.
We are now going to classify all critical points satisfying (4.11). Letting us denote pi := ni − 2,∑

i pi = 0 and −2 ≤ pi ≤ 6 must be satisfied. Hence there are 15 possible combinations of {pi},
which can be categorized into the following 3 groups,

(i) :{(4,−2,−2, 0), (3,−2,−1, 0), (3,−2, 1, 0), (2,−2, 0, 0), (2,−1,−1, 0), (1,−1, 0, 0), (0, 0, 0, 0)},
(ii) :{(2,−2, 1,−1), (1,−1, 1,−1), (2,−2, 2,−2)} ,
(iii) :{(6,−2,−2,−2), (5,−1,−2,−2), (3, 1,−2,−2), (4,−2,−1,−1), (3,−1,−1,−1)} .

Since the ordering of pi’s is irrelevant, we can take (i) p4 = 0, (ii) p1 = −p2 with p3 = −p4 and
(iii) p3 = p4, respectively without losing generality. In the following, we shall discuss separately
these cases.

(i) p4 = 0. Equation (4.11) implies that all cases belonging to this family can be identified as
degenerate cases of pi = 0 (i = 1, ..., 4). Hence the θ tensor can be written as

θ = rI2 ⊕ sI2 ⊕ tI2 ⊕
(
− 1

rst

)
I2 , detθ = 1 , (4.13)

where r, s and t are real parameters. We find that the cosmological constant (4.12) vanishes and
one of the eigenvalues must have opposite sign from others, since the overall sign flip has no effect.
Hence these vacua correspond to the SO(6, 2) gauging, which spontaneously breaks down to a
compact group SO(2)× SO(2)× SO(2)× SO(2) at the vacua. The residual gauge symmetry would
be enhanced to SO(4)× SO(2)× SO(2) for s = r and to SO(6)× SO(2) for r = s = t.

As we have seen, these vacua are parametrized by 3 continuous parameters. It is noted that
the determinant remains invariant detθ̃ = detθ under the SL(8,R) transformation θ → θ̃ = TUθU
(detU = 1). If detθ = ±1 had not been satisfied, it would correspond to the deformation of the
theory. This is not the case now, since detθ = 1 is always satisfied. This is consistent with the fact
that the moduli mass matrix vanishes exactly in the directions corresponding to the variation of
these parameters, as we will see later.

(ii) p1 = −p2 and p3 = −p4(pi &= 0). In this case, (n1, n2, n3, n4) = (4, 0, 3, 1), (3, 1, 3, 1), (4, 0, 4, 0)
are relevant. Inserting λ4 = −1/(λ1λ2λ3) into the first two equations of (4.11), we get two quadratic
equations for λ3,

p3λ1λ2λ
2
3 + p1λ1λ2(λ1 − λ2)λ3 + p3 = 0 , p3λ1λ2λ

2
3 + p1(λ

−1
1 − λ−1

2 )λ3 + p3 = 0 . (4.14)

These equations imply [(λ1λ2)2 + 1](λ1 − λ2) = 0, giving λ2 = λ1, ±iλ1. In the λ2 = λ1 case,
equation (4.14) implies that λi cannot be all real, so that only the (n1, n2, n3, n4) = (4, 0, 4, 0) case
is possible. The λ2 = ±i/λ1 case amounts to the permutations of eigenvalues for the λ2 = λ1 case.
Hence, the (4, 0, 3, 1), (3, 1, 3, 1) types have no fixed points and this class of solution corresponds to
the SO(4, 4) dS vacua,

θ = λI4 ⊕ (−λ)I4 , V =
g2

4

(
λ2 + λ−2

)
, detθ = λ8 > 0 , λ ∈ R . (4.15)
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:specified by 3 continuous parameters



SL(8,R) vacua

Gauging Greg Λ m2
S m2

U

SO(4, 4) SO(4)× SO(4) dS −2(×1), 2(×18), 0(×16) 2(×18), 1(×16),−2(×1)

SO(5, 3) SO(5)× SO(3) dS −2(×1),
4
3 (×14)

, 4(×5), 0(×15) 2(×30), − 2
3 (×5)

SO(8)

SO(7, 1) SO(7) AdS 2(×1), − 4
5 (×27)

, 0(×7) − 2
5 (×35)

SO(7)! T7

SO(8)

SO(6) AdS −1(×20), 2(×2), 0(×13) 0(×15), − 1
4 (×20)

SO(7, 1)

SO(7)! T7

SO(6)× SO(1, 1)! T12

SO(7, 1)
SO(5) AdS − 4

3 (×14)
, 2(×3), 0(×18)

2
3 (×5)

, 0(×30)
SO(6)× SO(1, 1)! T12

SO(6, 2) SO(2)4 Mink. Eq. (4.54) Eq. (4.55)

SO(4)× SO(2, 2)! T16 SO(2)4 Mink. Eq. (4.68) Eq. (4.69)

SO(2)× SO(2)! T20 SO(2)2 Mink. Eq. (4.70) Eq. (4.71)

Table 2: Mass spectrum for dyonic gaugings. Except for the Minkowski vacua, mass eigenvalues are

normalized by the absolute value of cosmological constant. Supersymmetries are completely broken.

vacua, due to the restrictive property of maximal supergravity. In particular, the result of this
vacuum search can have significant implications to the construction of inflationary universe models
on the base of string/M theory, because the maximal gauged supergravity may describe the gravity
sector very well, including non-perturbative effects in the 10/11-dimensional framework. In addition
it is also useful for the phenomenological applications to the condensed matter physics.

Utilizing the fact that the scalar fields parametrize the homogeneous space, we can analyze the
70 scalar mass spectrum at the origin of scalar space as argued in [20]. Specializing to the gaugings
contained in SL(8,R), we were able to enumerate all the possible vacua. We also developed a new
formulation which allows us to obtain the analytic expression of mass spectra in terms of eigenvalues
of the embedding tensor. We established an interesting structure about the moduli space of vacua:
when the cosmological constant is nonvanishing, the mass spectrum is only sensitive to the residual
gauge symmetry at the vacua. Namely, the mass spectra have to be coincident among the different
theories as long as their residual gauge symmetries are identical. This resolved the issue which
remained open in [20].

In some cases of dyonic gaugings, we are left with a deformation parameter s. It turns out
that the mass spectrum is nevertheless insensitive to the parameter s in units of the cosmological
constant. This means that SO(4, 4) and SO(5, 3) dS maxima do not provide sufficient e-foldings
in the standard potential-driven inflation scenario even in the deformed theory, since the slow-roll
parameter η is of order unity. We can also verify that the fraction of residual supersymmetries is
not dependent on the deformation parameter, i.e., all vacua except the maximally supersymmetric
AdS totally break supersymmetries.

We have also shown that the generic Minkowski vacua found in this paper do not have stable
mass spectra unless the remaining continuous parameters are finely tuned. This aspect seems a
new feature unnoticed in the literature.

The obvious next step is to explore the vacuum classifications for gaugings contained in other
subgroup of E7(7), such as E6(6) and SU∗(8). We believe that the techniques developed in this paper
could be used in other frames. It is interesting to see whether the characteristic features exposed
here are universal, i.e., whether the mass spectrum is insensitive to the deformation parameter and
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Exhaustive list of SL(8,R) type vacua & mass spectra
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Summary

  What we have done

•complete classification of vacua for gauge group contained in SL(8,R)

•obtained analytic expressions of mass eigenvalues

✓all vacua are generically unstable

✓many vacua (#"0) contain deformation parameter

✓insensitive to underlying gaugings & deformation parameter

  Future prospects

•explore other gaugings ⊄ SL(8,R)

•construct inflationary models

✓except N=8 AdS vacua, all SUSYs are broken

•find higher dimensional flux vacua description
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