"Effects of chameleon scalar field on rotation curves of the galaxies"

RESCEU SYMPOSIUM ON

GENERAL RELATIVITY AND GRAVITATION

JGRG 22

November 12-16 2012
Koshiba Hall, The University of Tokyo, Hongo, Tokyo, Japan

RESCEU Symposium on General Relativity and Gravitation JGRG22 at University of Tokyo

Effects of Chameleon Scalar Field on Rotation Curves of the Galaxies

Sirachak Panpanich Chulalongkorn University Thailand

Outlines

- Introduction
- Chameleon Dark Energy Model
- Effects on a Rotation Curve
- Results
- Conclusions

Introduction

Introduction

- From Equation of state $P=w \rho$

Introduction

- Quintessence

$$
S=\int d^{4} x \sqrt{-g}\left[-\frac{1}{2} \partial^{\mu} \phi \partial_{\mu} \phi-V(\phi)\right]
$$

Equation of motion
$\ddot{\phi}+3 H \dot{\phi}+\frac{\partial V}{\partial \phi}=0$
Friction term

Driving term

Energy density and pressure density + Friedmann acceleration equation

$$
\frac{\ddot{a}}{a}=-\frac{8 \pi G}{3}\left[\dot{\phi}^{2}-V(\phi)\right]
$$

Accelerated expansion requires

$$
\dot{\phi}^{2}<V(\phi) \begin{aligned}
& \text { Flat potential } \\
& \text { (in late time) }
\end{aligned}
$$

Introduction

- Quintessence

Power-law potential

$$
V(\phi)=\frac{M^{4+n}}{\phi^{n}}
$$

Equation of state

$$
w_{\phi}=\frac{P_{\phi}}{\rho_{\phi}}=\frac{\dot{\phi}^{2}-2 V(\phi)}{\dot{\phi}^{2}+2 V(\phi)}
$$

Slow-roll limit: $\frac{\dot{\phi}^{2}}{2} \square V(\phi)$

$$
\square w_{\phi}=-1
$$

Introduction

- Quintessence

Problem

The slow-roll limit (overdamping) will occur if

$$
H>m_{\phi} \quad\left(H_{0} \approx 10^{-33} \mathrm{eV}\right)
$$

\therefore Mass of scalar-field is very tiny

Long range force
(Why have we never detected it before?)

Chameleon Dark Energy Model

- Action in the Einstein frame

$$
S=\int d^{4} x \sqrt{-g}\left(\frac{M_{P l}^{2}}{2} R-\frac{(\partial \phi)^{2}}{2}-V(\phi)\right)-\int d^{4} x \mathrm{~L}_{m}\left(\psi_{m}^{(i)}, g_{\mu \nu}^{(i)}\right)
$$

matter fields couple to a metric

Equation of motion
(Cosmological scale)

$$
\ddot{\phi}+3 H \dot{\phi}+\frac{\partial V_{e f f}}{\partial \phi}=0
$$

$$
V_{e f f}(\phi)=V(\phi)+\rho_{m} e^{\beta \phi / M_{P l}}
$$

Conformal rescaling
(Conformal transformation)

$$
g_{\mu \nu}^{(i)}=e^{2 \beta_{i} \phi \mid M_{P l}} g_{\mu \nu}
$$

Einstein frame metric

Chameleon Dark Energy Model

The effective potential

Minimum point

$$
V,_{\phi}\left(\phi_{\min }\right)+\frac{\beta}{M_{P l}} \underline{\rho}_{m} e^{\beta \phi_{\min } / M_{P l}}=0
$$

Mass of scalar field
(about the minimum)

$$
m^{2}=V,{ }_{\phi \phi}\left(\phi_{\min }\right)+\frac{\beta^{2}}{M_{P l}^{2}} \underline{\rho_{m}} e^{\beta \phi_{\min } / M_{P l}}
$$

Large matter density \Rightarrow Huge m_{ϕ}
Small matter density \Rightarrow Tiny m_{ϕ}

Chameleon

Chameleon Dark Energy Model

Equation of motion (full-form)

$$
\nabla^{2} \phi=V,_{\phi}+\frac{\beta}{M_{P l}} \rho_{m} e^{\beta \phi / M_{P l}}
$$

In cosmological scale (neglect the gradient term)

$$
\ddot{\phi}+3 H \dot{\phi}+\frac{\partial V_{e f f}}{\partial \phi}=0
$$

In the chameleon model

$$
m \square H
$$

But, the slow-roll limit still occurs
(arXiv:astro-ph/0408415v2)

On a spherically symmetric object (neglect the time-dependent term)

$$
\frac{d^{2} \phi}{d r^{2}}+\frac{2}{r} \frac{d \phi}{d r}=V,{ }_{\phi}+\frac{\beta}{M_{P l}} \rho(r) e^{\beta \phi / M_{P l}}
$$

Chameleon Dark Energy Model

(Homogeneous density)

Since $\phi_{\min }$ and m_{ϕ} depend on local matter density

$\phi_{\text {min }}$ and m_{ϕ} inside an object

$\phi_{\text {min }}$ and m_{ϕ} outside an object

The scalar field has to roll out minimum to satisfy continuous conditions (ϕ and $\frac{d \phi}{d r}$)

Thin-shell regime (large object)

Thick-shell regime (small object)

(Thin-shell regime)

Chameleon Dark Energy Model

Since scalar field couples to matter

Fifth force

$$
\vec{F}_{\phi}=-\frac{\beta}{M_{P l}} M \vec{\nabla} \phi
$$

Scalar field acts as a potential for the force

Proved by Conformal transformation + Geodesics equation

$$
\ddot{x}^{\mu}+\Gamma_{\alpha \beta}^{\mu} \dot{x}^{\alpha} \dot{x}^{\beta}+\alpha_{\phi} \frac{\partial \phi}{\partial x_{\mu}}=0
$$

We have profile $\phi(r)$ from the thin-shell or thick-shell of an object.

Effects on Rotation Curves

Rotation curve

http://en.wikipedia.org/wiki/Galaxy_rotation_curve

Effects on Rotation Curves

- Dark matter halo profiles for investigating are as the following

NFW profile

$$
\rho(r)=\frac{\rho_{0}}{\frac{r}{a}\left(1+\frac{r}{a}\right)^{2}}
$$

ISO profile

$$
\rho(r)=\frac{\rho_{0}}{1+\left(\frac{r}{R_{s}}\right)^{2}}
$$

Parametrized model

$$
\rho(r)=\frac{\rho_{0}}{\left(\frac{r}{r_{s}}\right)^{\alpha}\left(1+\frac{r}{r_{s}}\right)^{3-\alpha}}
$$

- We suppose that dark matter halo is a spherical symmetric object

Effects on Rotation Curves

- Chameleon profile inside a dark matter halo

$$
\frac{d^{2} \phi}{d r^{2}}+\frac{2}{r} \frac{d \phi}{d r}=V_{, \phi}+\frac{\beta}{M_{P l}} \rho(r) e^{\beta \phi / M_{P l}}
$$

Numerical solution

Analytic solution

- Thick-shell regime : density of DM halo is a function of radius
- Power-law potential : $V(\phi)=\frac{M^{4+n}}{\phi^{n}}$

Effects on Rotation Curves

- Numerical solution

$$
\frac{d^{2} \phi}{d r^{2}}+\frac{2}{r} \frac{d \phi}{d r}=-n \frac{M^{4+n}}{\phi^{n+1}}+\frac{\beta}{M_{P l}} \rho(r) e^{\beta \phi / M_{P l}}
$$

U5005 ISO Halo, $\beta=1.69 \times 10^{-7}$

3 types of solution

Effects on Rotation Curves

- Analytic solution

$$
\frac{d^{2} \phi}{d r^{2}}+\frac{2}{r} \frac{d \phi}{d r} \approx \frac{\beta}{M_{P l}} \rho(r)^{e^{\beta \phi \mid M_{P l}} \approx 1}
$$

Neglect the power-law potential term

$$
\phi^{\prime}(r)=\frac{\beta}{4 \pi M_{P l} r^{2}}\left(M(r)-M_{0}+\gamma\right) \begin{aligned}
& M_{0}: \text { Total mass } \\
& \gamma \propto \text { Slope }
\end{aligned}
$$

- Diverge at origin
- Finite at origin
- Truncate before origin

$$
\begin{aligned}
& \gamma<M_{0} \\
& \gamma=M_{0} \\
& \gamma>M_{0}
\end{aligned}
$$

Effects on Rotation Curves

- Constraint on the matter-chameleon coupling

From EOM with approximation

$$
\phi^{\prime}(r)=\frac{\beta}{4 \pi M_{P l}}\left(\frac{M(r)}{r^{2}}\right)+\frac{1}{r^{2}}\left(\left.\phi^{\prime} r^{2}\right|_{r=0}\right)
$$

Boundary conditions

$$
\phi_{\infty} \geq \frac{\beta}{4 \pi M_{P l}} \int_{0}^{r_{\max }} d r \frac{M(r)}{r^{2}}
$$

| $\begin{array}{l}\text { Minimum of } \\ \text { effective pot. }\end{array}$ |
| :--- |$\phi_{\infty}=\left(\frac{n M^{4+n} M_{P l}}{\rho_{\infty} \beta}\right)^{\frac{1}{n+1}}$

(original paper)

$$
\begin{array}{lll}
\frac{d \phi}{d r}=0 & \text { at } & r=0 \\
\phi \rightarrow \phi_{\infty} & \text { as } & r \rightarrow \infty
\end{array}
$$

$$
\phi\left(r_{\max }\right)=\frac{\beta}{4 \pi M_{P l}} \int_{0}^{r_{\max }} d r \frac{M(r)}{r^{2}}+\phi(0)
$$

$\phi_{\infty} \geq \frac{\beta}{4 \pi M_{P l}} \int_{0}^{r_{\max }} d r \frac{M(r)}{r^{2}}$

Minimum of effective pot.$\phi_{\infty}=\left(\frac{n M^{4+n} M_{P l}}{\rho_{\infty} \beta}\right)^{\frac{1}{n+1}}$
$\beta_{\max }=\left(\frac{n M^{4+n} M_{P l}}{\rho_{\infty}}\right)^{\frac{1}{n+2}}\left(\frac{4 \pi M_{P l}}{\int_{0}^{r_{\max }} d r \frac{M(r)}{r^{2}}}\right)^{\frac{n+1}{n+2}}$
ISO U5005■1.69×10-7
NFW U5005■ $1.76 \times 10^{-7} \quad 18$

Effects on Rotation Curves

- Analytic solution (NFW profile)

$$
\rho(r)=\frac{\rho_{0}}{\frac{r}{a}\left(1+\frac{r}{a}\right)^{2}}
$$

$$
\phi(r)=\frac{a^{3} \beta \rho_{0}}{M_{P l}}\left(\frac{1}{a}-\frac{\ln (1+r / a)}{r}\right)+\phi(0)
$$

- Analytic solution (ISO profile)

$$
\rho(r)=\frac{\rho_{0}}{1+\left(\frac{r}{R_{s}}\right)^{2}}
$$

$$
\phi(r)=\frac{\beta R_{s}^{3} \rho_{0}}{M_{P l}}\left(\frac{\arctan \left(r / R_{s}\right)}{r}+\frac{\ln \left(1+r^{2} / R_{s}^{2}\right)}{2 R_{s}}-\frac{1}{R_{s}}\right)+\phi(0)
$$

Effects on Rotation Curves

- Analytic solution (PM profile)

$$
\rho(r)=\frac{\rho_{0}}{\left(\frac{r}{r_{s}}\right)^{\alpha}\left(1+\frac{r}{r_{s}}\right)^{3-\alpha}}
$$

$$
\phi(r)=\frac{\beta \rho_{0}}{M_{P l}} \frac{r^{\alpha}}{3-\alpha}\left(\frac{r^{2-\alpha}}{2-\alpha}{ }_{2} F_{1}\left(2-\alpha, 3-\alpha, 4-\alpha,-\frac{r}{r_{s}}\right)\right)+\phi(0)
$$

U5005 ISO Halo, $\beta=1.69 \times 10^{-7}$

Effects on Rotation Curves

Circular velocity + Fifth force

$$
\begin{aligned}
& v_{c}(r)=\sqrt{\frac{G M(r)}{\mu r}+\frac{\beta r}{M_{P l}} \frac{d \phi}{d r}} \\
& \text { M halo profile } \quad \text { Numerical solution }
\end{aligned}
$$

Late-type low surface brightness (LSB) galaxies

Mainly effect on rotation curve comes from dark matter halo

Reference:

de Blok, W.J.G., and Bosma, A. High-resolution rotation curves of Low Surface Brightness galaxies. Astron. Astrophys. 385 (2002): 816

Results

- Rotation curves of U5005

$$
\text { U5005 NFW Halo, } \frac{\beta}{10^{-3}}=3,6,9
$$

U5005 ISO halo, $\frac{\beta}{10^{-3}}=1,2,3$

Red lines \Rightarrow No chameleon effect
Error bar:
http://vizier.cfa.harvard.edu/viz-bin/VizieR?-source=J/A+A/385/816/

Results

LSB galaxy

U5005 (NFW)	6×10^{-3}
U5005 (ISO)	2×10^{-3}
U5005 (PM $\alpha=0.2)$	6×10^{-3}
U5005 (PM $\alpha=0.7)$	9×10^{-3}

Conclusion

- We investigate effects of chameleon scalar field on rotation curves by adding the fifth force
- Analytic solution + Normal boundary conditions
\Rightarrow Constraint on coupling constant
cannot occur in some DM halo profiles
- Divergent profile

\Rightarrow
Rotation curves are steeper around center of galaxy
Upper bound on coupling constant from observational data

Thank you for your attention

Int. J. Mod. Phys. D Vol. 21, No. 5 (2012) 1250041, arXiv:hep-ph/1103.119852

