

Sirachak Panpanich, JGRG 22(2012)111213

"Effects of chameleon scalar field on rotation curves of the

galaxies"

RESCEU SYMPOSIUM ON

GENERAL RELATIVITY AND GRAVITATION

JGRG 22

November 12-16 2012

Koshiba Hall, The University of Tokyo, Hongo, Tokyo, Japan

RESCEU Symposium on General Relativity and Gravitation JGRG22 at University of Tokyo

Effects of Chameleon Scalar Field on Rotation Curves of the Galaxies

Sirachak Panpanich Chulalongkorn University Thailand

Int. J. Mod. Phys. D Vol. 21, No. 5 (2012) 1250041, arXiv:hep-ph/1103.1198v2

Outlines

- Introduction
- Chameleon Dark Energy Model
- Effects on a Rotation Curve
- Results
- Conclusions

Quintessence

$$S = \int d^4x \sqrt{-g} \left[-\frac{1}{2} \partial^{\mu} \phi \partial_{\mu} \phi - V(\phi) \right]$$

Energy density and pressure density + Friedmann acceleration equation

$$\frac{\ddot{a}}{a} = -\frac{8\pi G}{3} \left[\dot{\phi}^2 - V(\phi) \right]$$

Accelerated expansion requires

 $\dot{\phi}^2 < V(\phi)$ | Flat potential (in late time)

.

• Quintessence

Equation of state

$$w_{\phi} = \frac{P_{\phi}}{\rho_{\phi}} = \frac{\dot{\phi}^2 - 2V(\phi)}{\dot{\phi}^2 + 2V(\phi)}$$
Slow-roll limit : $\frac{\dot{\phi}^2}{2} \Box V(\phi)$

• Quintessence

• Action in the Einstein frame

$$S = \int d^{4}x \sqrt{-g} \left(\frac{M_{Pl}^{2}}{2} R - \frac{(\partial \phi)^{2}}{2} - V(\phi) \right) - \int d^{4}x L_{m}(\psi_{m}^{(i)}, g_{\mu\nu}^{(i)})$$

Equation of motion

(Cosmological scale)

$$\ddot{\phi} + 3H\dot{\phi} + \frac{\partial V_{eff}}{\partial \phi} = 0$$

$$\bigvee V_{eff}(\phi) = V(\phi) + \rho_m e^{\beta \phi/M_{Pl}}$$

matter fields couple to a metric

Conformal rescaling

(Conformal transformation)

$$g_{\mu\nu}^{(i)} = e^{2\beta_i \phi/M_{Pl}} g_{\mu\nu}$$

Einstein frame metric 8

The effective potential

Minimum point

$$V_{\phi}(\phi_{\min}) + \frac{\beta}{M_{Pl}} \rho_m e^{\beta \phi_{\min}/M_{Pl}} = 0$$

Mass of scalar field

(about the minimum)

$$m^{2} = V_{\phi\phi}\left(\phi_{\min}\right) + \frac{\beta^{2}}{M_{Pl}^{2}} \rho_{m} e^{\beta\phi_{\min}/M_{Pl}}$$

Large matter density rightarrow Huge m_{ϕ} Small matter density rightarrow Tiny m_{ϕ}

Chameleon

Equation of motion (full-form)

$$\nabla^2 \phi = V_{,\phi} + \frac{\beta}{M_{Pl}} \rho_m e^{\beta \phi/M_{Pl}}$$

In cosmological scale (neglect the gradient term)

$$\ddot{\phi} + 3H\dot{\phi} + \frac{\partial V_{eff}}{\partial \phi} = 0$$

In the chameleon model

 $m \square H$

But, the slow-roll limit still occurs (arXiv:astro-ph/0408415v2) On a spherically symmetric object (neglect the time-dependent term)

$$\frac{d^{2}\phi}{dr^{2}} + \frac{2}{r}\frac{d\phi}{dr} = V_{,\phi} + \frac{\beta}{M_{Pl}}\rho(r)e^{\beta\phi/M_{Pl}}$$

$$Profile \phi(r)$$

$$Profile \phi(r)$$

$$\rho_{c} \rho_{\infty}$$
10

 ϕ_{\min} and m_{ϕ} inside an object

Since ϕ_{\min} and m_{ϕ} depend on local matter density

(Homogeneous density)

The scalar field has to roll out minimum to satisfy continuous conditions (ϕ and $d\phi$) dr Thin-shell regime (large object) 2 types of profile

(Divided by size of object)

Thick-shell regime (small object)

 ϕ_{\min} and m_{ϕ} outside an object

(Thin-shell regime)

Since scalar field couples to matter

$$\vec{F}_{\phi} = -\frac{\beta}{M_{Pl}} M \vec{\nabla} \phi$$

Scalar field acts as a potential for the force

Proved by Conformal transformation + Geodesics equation

$$\ddot{x}^{\mu} + \Gamma^{\mu}_{\alpha\beta} \dot{x}^{\alpha} \dot{x}^{\beta} + \alpha_{\phi} \frac{\partial \phi}{\partial x_{\mu}} = 0$$

We have profile $\phi(r)$ from the thin-shell or thick-shell of an object.

Rotation curve

What will happen on a rotation curve if we have chameleon scalar field in our universe?

• Dark matter halo profiles for investigating are as the following

• We suppose that dark matter halo is a spherical symmetric object

• Chameleon profile inside a dark matter halo

- Thick-shell regime : density of DM halo is a function of radius

- Power-law potential :
$$V(\phi) = \frac{M^{4+n}}{\phi^n}$$

• Numerical solution

• Constraint on the matter-chameleon coupling

From EOM with approximation $\phi'(r) = \frac{\beta}{4\pi M_{Pl}} \left(\frac{M(r)}{r^2} \right) + \frac{1}{r^2} \left(\phi' r^2 \Big|_{r=0} \right)$

> Boundary conditions (original paper) $\frac{d\phi}{dr} = 0 \quad at \ r = 0$

$$\phi \rightarrow \phi_{\infty} \ as \ r \rightarrow \infty$$

$$\phi(r_{\max}) = \frac{\beta}{4\pi M_{Pl}} \int_{0}^{r_{\max}} dr \frac{M(r)}{r^{2}} + \phi(0)$$

$$\phi_{\infty} \geq \frac{\beta}{4\pi M_{Pl}} \int_{0}^{r_{\text{max}}} dr \frac{M(r)}{r^{2}}$$

$$Minimum \text{ of effective pot.} \quad \phi_{\infty} = \left(\frac{nM^{4+n}M_{Pl}}{\rho_{\infty}\beta}\right)^{\frac{1}{n+1}}$$

$$\beta_{\text{max}} = \left(\frac{nM^{4+n}M_{Pl}}{\rho_{\infty}}\right)^{\frac{1}{n+2}} \left(\frac{4\pi M_{Pl}}{\int_{0}^{r_{\text{max}}} dr \frac{M(r)}{r^{2}}}\right)^{\frac{n+1}{n+2}}$$

$$ISO \text{ U5005} \square 1.69 \times 10^{-7}$$

NFW U5005 \Box 1.76×10⁻⁷ 18

U5005 NFW Halo, $\beta = 1.76 \times 10^{-7}$ 600 000 Analytic solution (NFW profile) 500 000 $\rho(r) = \frac{\rho_0}{\frac{r}{a} \left(1 + \frac{r}{a}\right)^2}$ U5005 NFW Halo, $\beta = 1.76 \times 10^{-7}$ 400 000 200 000 (A⁹) ⊕ 300 000 150 000 φ (GeV) 100 000 200 000 $\phi(r) = \frac{a^3 \beta \rho_0}{M_{_{Pl}}} \left(\frac{1}{a} - \frac{\ln(1 + r/a)}{r} \right) + \phi(0)$ 50 000 100 000 10 20 30 40 0 R(kpc) 200 300 400 500 100 600 700 0 R(kpc) Analytic solution (ISO profile) U5005 ISO Halo, $\beta = 1.69 \text{ x } 10^{-7}$ 600 000 $\rho(r) = \frac{\rho_0}{1 + \left(\frac{r}{R}\right)^2}$ 500 000 U5005 ISO Halo, $\beta = 1.69 \text{ x } 10^{-7}$ 400 000 200 000 (Ge) 300 000 ↓ 150 000 φ (GeV) 100 000 $\phi(r) = \frac{\beta R_s^3 \rho_0}{M_{-1}} \left(\frac{\arctan(r/R_s)}{r} + \frac{\ln(1+r^2/R_s^2)}{2R_s} - \frac{1}{R_s} \right) + \phi(0)$ 200 000 50,000 100 000 10 20 30 40 R(kpc) 200 400 600 800 1000 1200 0

R(kpc)

Circular velocity + Fifth force

$$v_{c}(r) = \sqrt{\frac{GM(r)}{r} + \frac{\beta r}{M_{Pl}}} \frac{d\phi}{dr}$$

Only DM halo profile Numerical solution

Late-type low surface brightness (LSB) galaxies

Mainly effect on rotation curve comes from dark matter halo

Reference:

de Blok, W.J.G., and Bosma, A. High-resolution rotation curves of Low Surface Brightness galaxies. Astron. Astrophys. 385 (2002): 816 21

Results

Error bar:

http://vizier.cfa.harvard.edu/viz-bin/VizieR?-source=J/A+A/385/816/ 22

Results

Conclusion

- We investigate effects of chameleon scalar field on rotation curves by **adding the fifth force**
- Analytic solution + Normal boundary conditions
 Constraint on coupling constant
 cannot occur in some DM halo profiles
- Divergent profile

Rotation curves are steeper around center of galaxy
 Upper bound on coupling constant from observational data

Thank you for your attention

Int. J. Mod. Phys. D Vol. 21, No. 5 (2012) 1250041, arXiv:hep-ph/1103.119852