

Kyohei Mukaida, JGRG 22(2012)111210

"Dynamics of oscillating scalar field in thermal environment"

RESCEU SYMPOSIUM ON

GENERAL RELATIVITY AND GRAVITATION

JGRG 22

November 12-16 2012

Koshiba Hall, The University of Tokyo, Hongo, Tokyo, Japan

Dynamics of Oscillating Scalar Field in Thermal Environment

Kyohei Mukaida (Univ. of Tokyo)

Based on **1208.3399** with **Kazunori Nakayama**

Introduction

Introduction

- At the early universe, a scalar field may condensate homogeneously w/ a far from equilibrium value.
- It begins to oscillate coherently at H ~ m and behaves as "Matter".
- Examples: Inflaton, Moduli, Curvaton, Affleck-Dine field...
- To avoid the "overclosure", the scalar condensate should decay to the "Radiation" sector at an appropriate epoch.
 - ► Interaction btw the scalar and radiation

Introduction

Such interactions btw scalar and radiation induce various effects that make the scalar dynamics complicated:

Thermal Effects

 Thermally modified effective potential of the scalar field
 Dissipation of scalar condensate into the radiation sector e.g., [J. Yokoyama; M. Drewes; A. Berera et al.]
 Non-perturbative particle production e.g., [L. Kofman, A. Linde, A. Starobinsky]

(possible) non-topological soliton formation

e.g., [E. Copeland et al.; S. Kasuya et al.]

We included **these effects** simultaneously.

Outline

- Introduction
- Closed Time Path Formalism
- Thermal Effects
- Non-perturbative Particle Production
- Numerical Results

- Typically, there are two effects from thermal plasma.
 - Force from thermal plasma
 - Dissipation to thermal plasma

*If the Bkg plasma remains in thermal equilibrium.

Reduced to Coarse-Grained EOM of Φ :

$$0 = \frac{\delta S}{\delta \phi} + \frac{\delta \tilde{\Gamma}}{\delta \phi} = \frac{\delta S}{\delta \phi} - \frac{\partial \mathcal{F}}{\partial \phi} - \Pi_{\text{ret}} * \delta \phi + \cdots$$
$$\simeq \frac{\delta S}{\delta \phi} - \frac{\partial \mathcal{F}}{\partial \phi} - \Gamma_{\phi} \dot{\phi}; \quad \Gamma_{\phi} \simeq \lim_{\omega \to 0} \frac{\Pi_{J}(\omega, \mathbf{0})}{2\omega}.$$

e.g., [A. Berera et al., hep-ph/9803394]

- Typically, there are two effects from thermal plasma.
 - Force from thermal plasma:
 - $\ddot{\phi} + (3H + \Gamma_{\phi})\dot{\phi} + m_{\phi}^2\phi = \frac{\partial g}{\partial \phi}$
 - Free Energy of thermal plasma w/ the background ϕ .

- Typically, there are two effects from thermal plasma.
 - Force from thermal plasma:

 $\ddot{\phi} + (3H + \Gamma_{\phi})\dot{\phi} + m_{\phi}^2 \phi = -\frac{\partial f}{\partial a}$

Free Energy of thermal plasma w/ the background ϕ .

-Small amplitude \Rightarrow Thermal mass $\mathcal{F} \propto \lambda^2 T^2 \phi^2; \ \lambda \phi \ll T$

-Large amplitude
$$\Rightarrow$$
 Thermal log
 $\mathcal{F} \propto \alpha^2 T^4 \ln(\lambda^2 \phi^2 / T^2); \ \lambda \phi \gg$

[A. Anisimov, M. Dine]

T

- Typically, there are two effects from thermal plasma.
 - Dissipation to thermal plasma:

$$\ddot{\phi} + (3H + \Gamma_{\phi})\dot{\phi} + m_{\phi}^{2}\phi = -\frac{\partial \mathcal{F}}{\partial \phi}$$
Friction coefficient from Kubo-formula $\Gamma_{\phi} \simeq \lim_{\omega \to 0} \frac{\Pi_{I}(\omega, \mathbf{0})}{2\omega}$

- Typically, there are two effects from thermal plasma.
 - Dissipation to thermal plasma:

 $\ddot{\phi} + (3H + \Gamma_{\phi})\dot{\phi} + m_{\phi}^{2}\phi = -\frac{\partial \mathcal{F}}{\partial \phi}$ Friction coefficient from Kubo-formula $\Gamma_{\phi} \simeq \lim_{\omega \to 0} \frac{\Pi_{J}(\omega, \mathbf{0})}{2\omega}$

-Small amplitude: processes including X.

$$\Gamma_{\phi} \sim \lambda^2 \alpha T$$

-Large amplitude: multiple scattering by gauge bosons.

$$\phi \sim \frac{\alpha^2}{\ln \alpha^{-1}} \frac{T^3}{\phi^2}$$
 [D. Bodeker; M. Laine]

Non-perturb. Particle Production

Non-perturb. Production

- The adiabaticity of x particles can be broken down when the scalar passes through the origin.
 - Adiabaticity is broken if $\epsilon \gg 1$.

$$\boldsymbol{\epsilon} := \left| \frac{\dot{\omega}_{\chi}}{\omega_{\chi}^2} \right|; \quad \omega_{\chi} = \sqrt{\mathbf{k}^2 + m_{\text{eff}}^{\chi}(T)^2 + \lambda^2 \phi^2(t)}$$

 \blacksquare Efficient χ production can occur at $\Phi \sim 0$.

[L. Kofman, A. Linde, A. Starobinsky, hep-ph/9704452]

Non-perturb. Production

If Φ oscillates w/ the finite T potential (free-energy),

 $\begin{cases} \lambda \ll \alpha : \text{No efficient prod.} \\ \lambda \gg \alpha : \text{Complicated...} \end{cases}$

If Φ oscillates w/ the zero T potential, the efficient particle production occurs $@ |\phi| \leq \left[m_{\phi} \tilde{\phi} / \lambda \right]^{1/2}$.

$$n_{\chi} \sim \frac{k_*^3}{(2\pi)^3}; \quad k_* = \sqrt{\lambda \tilde{\phi} m_{\phi}}$$

[$\tilde{\phi}$: amplitude]

Non-perturb. Production

The produced χ may decay @ $t_{dec} \Gamma_{\chi}(\phi(t_{dec})) \sim 1$.

[Otherwise the parametric resonance may occur]

The **\Phi's** energy is partially converted to the radiation, and it is estimated as

$$\frac{\delta \rho_{\phi}}{\rho_{\phi}} \sim \frac{\lambda^2}{4\pi^3 \alpha^{1/2}}$$
; @ every one oscillation.

Here we assumed that the decay rate of χ is given by $\Gamma_{\chi} \sim \alpha m_{\chi}(\phi).$

[Felder, Kofman, Linde, "Instant preheating", hep-ph/9812289]

Kyohei Mukaida - Univ. of Tokyo

Summary

- Interactions btw scalar and radiation are often introduced to avoid overclosure.
- Such interactions induce various effects that make the dynamics of scalar condensate complicated.
- We take into account all these effects properly, and show that such effects can change the abundance of scalar condensate by orders in a broad range of parameters.

Back Up

CTP formalism

CTP Formalism

Closed Time Path (CTP) formalism gives us useful tools to study an evolution of expectation value.

An expectation value can be obtained from CTP integral: $\langle \hat{O}_H(t) \rangle = \operatorname{tr} \left| \hat{\rho} T_C \exp\left(-i \int_C dt' H_I(t') \right) \hat{O}_I(t) \right|$ T_C : contour *C* ordering ρ : density matrix $\hat{O}_H(t)$: Heisenberg Picture $\hat{O}_{I}(t)$: Interaction Picture e.g., [J. Berges, hep-ph/0409233]

CTP Formalism

It is useful to consider n-point functions on CTP.

 $\phi = \operatorname{tr} \left[\hat{\rho} \hat{\phi} \right]$ $G = \operatorname{tr} \left[\hat{\rho} T_C \hat{\phi} \hat{\phi} \right]^{\operatorname{con}}$ $V_n = \operatorname{tr} \left[\hat{\rho} T_C \hat{\phi} \cdots \hat{\phi} \right]^{\operatorname{con}}$ $T_C : \operatorname{contour} C \text{ ordering}$ $\operatorname{[con. stands for connected part]}$

Kadanoff-Baym: Follow the evolution of **Φ** and G self-consistently.

Schwinger Dyson equations on CTP [w/ skeleton_diagram expansion]

$$G^{-1} = G_0^{-1} + \Pi[\phi, G]; \quad \Pi = -2i \frac{\delta \tilde{\Gamma}[\phi, G]}{\delta G}$$
$$0 = \frac{\delta S}{\delta \phi} + \frac{\delta \tilde{\Gamma}[\phi, G]}{\delta \phi}$$
[Cornwall, Jackiw, Tomboulis, 1974]

Coherent Oscillation

- Scalar condensate is obtained from one point func.
- If the scalar oscillates adiabatically w.r.t. thermal plasma...
 - Propagators in thermal bath \rightarrow thermal ones
 - Reduced to Coarse-Grained EOM of Φ :

$$0 = \frac{\delta S}{\delta \phi} + \frac{\delta \tilde{\Gamma}}{\delta \phi} = \frac{\delta S}{\delta \phi} - \frac{\partial \mathcal{F}}{\partial \phi} - \Pi_{\text{ret}} * \delta \phi + \cdots$$
$$\simeq \frac{\delta S}{\delta \phi} - \frac{\partial \mathcal{F}}{\partial \phi} - \Gamma_{\phi} \dot{\phi}; \quad \Gamma_{\phi} \simeq \lim_{\omega \to 0} \frac{\Pi_{J}(\omega, \mathbf{0})}{2\omega}.$$

e.g., [A. Berera et al., hep-ph/9803394]

Coleman-Weinberg potential

CW potential

In non-SUSY, there exists Coleman Weinberg (CW) potential:

$$\mathcal{V}_{CW} = \sum_{F} \epsilon_{F} \frac{m_{\chi}^{4}(\phi)}{64\pi^{2}} \left[\ln \frac{m_{\chi}^{2}(\phi)}{\mu^{2}} - \frac{3}{2} \right]$$

 $\epsilon_F := \begin{cases} +1 & \text{for real scalar} \\ -2 & \text{for Weyl fermion} \end{cases}$

In SUSY, such radiative corrections to flat directions are suppressed and remain only small logs due to the SUSY breaking effects.

Oscillation w/ thermal log:

Kyohei Mukaida - Univ. of Tokyo

Oscillation w/ thermal mass:

Kyohei Mukaida - Univ. of Tokyo

Oscillation w/ zero T mass:

Kyohei Mukaida - Univ. of Tokyo

Oscillon

Oscillon (I-ball)

- A coherently oscillating scalar with a potential flatter than the quadratic one has an instability and may fragment into classical lumps.
- Even if there is no conserved charge, their stability is guaranteed by the adiabatic invariant. [Kasuya, Kawasaki, Takahashi, hep-ph/0209358]
- Such a non-topological soliton is dubbed as oscillon or I-ball.
 E.g., [Copeland, Gleiser, Muller, hep-ph/9503217] [Kasuya, Kawasaki, Takahashi, hep-ph/0209358]

Oscillon (I-ball)

The region where the I-ball may be formed. Coupling

btw Φ & radiation: *λ*

Oscillon (I-ball)

The region where the I-ball may be formed. Coupling

btw Φ & radiation: *λ*

Bulk Viscosity

Bulk Viscosity

The dissipation rate at large amplitude regime is directly related to the bulk viscosity of Yang-Mills plasma.

$$\Gamma_{\phi} = \lim_{\omega \to 0} \frac{\Pi_{J}(\omega, \mathbf{0})}{2\omega}$$

$$= \lim_{\omega \to 0} \frac{1}{2\omega} \int d^{4}x \ e^{-i\omega t} \langle [\hat{O}(t, \mathbf{x}), \hat{O}(0)] \rangle; \quad \hat{O}(x) = \frac{A}{8\pi^{2}\phi} F^{a\mu\nu}(x) F^{a}_{\mu\nu}(x)$$
[D. Bodeker; M. Laine]
Bulk Viscosity: $\zeta = \frac{1}{9} \int d^{4}x \ e^{-i\omega t} \langle [T^{\mu}_{\ \mu}(t, \mathbf{x}), T^{\nu}_{\ \nu}(0, \mathbf{0})] \rangle$

$$\zeta \sim \frac{\alpha^{2}T^{3}}{\ln[1/\alpha]}; \text{ @ weak coupling}$$
[Arnold, Dogan. Moore, hep-ph/0608012]