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Abstract
We revisit the issue on signatures of pre-inflationary background anisotropy by con-
sidering the quantization of a massless and minimally coupled scalar field in an axially
symmetric Kasner background, mimicking cosmological perturbations. We show that
the power spectrum of the scalar field fluctuation has a negligible difference from
the standard inflation in the non-planar directions, but it has a sharp peak around
the symmetry plane. For the non-planar high-momentum modes, we use the WKB
approximation for the first period and the asymptotic approximation based on the
de Sitter solution for the next period. At the boundary, two mode functions have
the same accuracy with error of O(Hi/k). We calculate the approximation up to the
order of (Hi/k)

6 and show that the power spectrum of the scalar field fails to get
corrections until we execute the approximation up to 6th order. This note is based
on our recent paper [1].

1 Introduction

Inflation has become one of the paradigms of modern cosmology. First of all, inflation elegantly solves
many problems which are present in the standard Big-Bang model such as the horizon and flatness
problems. Second, it accounts for the origin of the large scale structure of the universe in terms of the
quantum fluctuations originating from the adiabatic vacuum structure in early universe. Remarkably, the
nature of the primordial fluctuations is understood in terms of symmetries of the de Sitter spacetime. In
general, we need n-point correlation functions to characterize the statistical nature of primordial fluctu-
ations. However, these symmetries lead the power spectrum of a scale invariant form. These predictions
from symmetries are robust and universal in inflationary scenarios. In fact, the above predictions have
been confirmed, e.g., by the measurements of cosmic microwave background (CMB). As the observational
precision increases, we have to go beyond the power spectrum to look at fine structure of the primordial
fluctuations. Since in the realistic inflationary universe the symmetries of the de Sitter spacetime do not
hold exactly, violation of them provides a measurable effect. One possibility is introducing spatially ho-
mogeneous models violating the spatial isotropy [2–4], where the Copernican principle is kept since there
is no privileged positions in the universe. The universe has a privileged direction. From the observational
point of view, a lot of anomalies indicating the statistical anisotropy are reported although its statistical
significance is uncertain.

We start from the discussion on the evolution of anisotropic universe in the Einstein gravity minimally
coupled to a massive scalar field, where the scalar field plays the role of the inflaton. To obtain a
sufficiently long period of inflation, one usually imposes the slow rolling condition, ϕ0 ≫ MP , where ϕ0

is the initial value of the inflaton. Under the assumption, as discussed in Ref. [5], the background metric
can be approximated by the Kasner spacetime with a positive cosmological constant, Λ(= 3Hi

2). Among
all, we are mainly interested in the the regular Kasner spacetimes with two dimensional axial symmetry
with metric,

ds2 = −dτ2 + sinh
2
3 (3Hiτ)

[
tanh−

2
3

(3Hiτ

2

)
(dx2

1 + dx2
2) + tanh

4
3

(3Hiτ

2

)
dx2

3

]
. (1)
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The spacetime has a privileged axis x3 orthogonal to the symmetry plane. The spacetime has a Rindler-
like event horizon at τ = 0 since g11(= g22) approaches to a finite value and g33 goes to zero linearly.
This spacetime is a good testing ground in analyzing the properties of anisotropic universes because of a
couple of reasons. First, it bears various important features of the whole anisotropic universes including
large anisotropy at τ = 0. Second, only in this symmetric case of all anisotropic expansions, we can
impose proper anisotropic vacuum state in terms of the zeroth order WKB approximation [6].

If one uses the Sasaki-Mukhanov variable, except for the complication due to the mixing of tensor-
scalar modes, the evolutions of the metric perturbations are not much different from that of a massless
scalar field [7]. In Ref. [5], it was also shown that the mode mixing modifies the power spectrum only
by a proportionality factor with a small correction term of order m/Hi, where m is the mass of the
inflaton. Therefore, as a formulation level, it is good to deal with the scalar field rather than the metric
perturbation itself. Hence in this work, we are interested in the evolution of a massless, minimally coupled
scalar field propagating on the background anisotropic universe (1) with action

Sϕ = −1

2

∫
d4x

√
−g
(
gµν∂µϕ∂νϕ

)
. (2)

This scalar field is not the inflaton but just a mimic of metric perturbations.

2 Quantization of the Scalar field on anisotropic vacuum

The canonical quantization of the minimally coupled massless scalar field with the action (2) in the
anisotropic spacetime (1) is done in the standard manner:

ϕ =

∫
d3k
(
ukak + u∗

ka
†
k

)
, (3)

where the creation and annihilation operators satisfy the commutation relations
[
ak1 , a

†
k2

]
= δ(k1 − k2)

(others are zero) and uk = eikxϕk/(2π)
3/2. The details of the quantization process depend on the choice

of the mode function uk. We normalize the mode function as ϕk∂τϕ
∗
k −

(
∂τϕk

)
ϕ∗
k = i

e3α .

For the later convenience, we introduce a dimensionless time x by sinh(εx) = 1
sinh(3Hiτ)

= e−3α, where

ε denotes a small expansion parameter which will be specified later. The arrow of time for x is inverted
since it varies from ∞ to 0+ as the comoving time τ increases from 0+ to ∞.

The equation of motion for the scalar field is written in the form of a time-dependent oscillator( d2

dx2
+Ωk(x)

2
)
ϕk = 0 , (4)

where the dimensionless frequency squared is

Ω2
k(x) =

(
ε

3Hi

)2 24/3
(
k2⊥e

−2εx + k23
)

(1− e−2εx)4/3
=

2(k̄ε2/3)2

9

(
eεx

sinh εx

)1/3(
1

e2εx − 1
+ r2

)
. (5)

Here we define a scaled wave-number and a measure of planarity of a given mode by k̄ = ε1/3 k
Hi

, r =
k3

k , where k2 := k21 + k22 + k23 = k2⊥ + k23. Later in this paper, we omit k in the frequency squared Ω2
k for

simplicity. The power spectrum is defined by

⟨
0|ϕ2|0

⟩
:=

∫
d ln k

∫
dθk
2

P, P =
k3

2π2

∣∣ϕk

∣∣2. (6)

In contrast to the case of the standard de Sitter universe the direction dependence would be included in
the power spectrum. The vacuum is chosen at the initial anisotropic era: τ → +0 to satisfy ak|0⟩ = 0.
For this purpose, we choose the solution to be purely positive frequency mode with respect to τ at the
early stage.
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3 Non-planar high-momentum modes

As mentioned in the introduction, we use the WKB solution at early times (x > x∗) and asymptotic
solution at later times (x < x∗). At the matching time x = x∗, the accuracies of the two are equal. Later
in this paper, we set x∗ = 1 by choosing ε appropriately. We also assume that k̄ is larger than one, which
will be satisfied with the modes we are interested in at the present approximation.

The WKB approximation is if ϵ(x) :=

∣∣∣∣ dΩ2(x)
dx

Ω3(x)

∣∣∣∣ ≪ 1. For the early times, the WKB wavefunction

is expanded up to an enough adiabatic order, to validate our matching scheme with the solutions in
the asymptotic region. The next order of the approximation will improve the accuracy by the order
EWKB(x) ∼ ϵ(x)2 ≃ 1

k̄2 x2/3 .

In the later time limit, the space-time approaches that of the de Sitter spacetime. Therefore, it is
natural that the zeroth order solution is just the well-known scalar field mode solution in the de Sitter
spacetime. The higher order corrections are based on the asymptotic approximation based on the limit
εx ≪ 1. By series expanding the frequency squared, we approximate the equation of motion (4) to be(

d2

dx2
+

∞∑
n=0

εnVn

)
ϕ = 0 , (7)

where the order by order corrections of the frequency squared are the same order for x ∼ 1. The general
solution to the differential equation (7) is given by ϕ = A+u(x)+A−v(x) , where u and v are the positive
and negative frequency modes, respectively. We get the approximate solution by series expanding the
modes u = u0 + εu1 + ε2u2 + · · · and v = v0 + εv1 + ε2v2 + · · · and then solving the equation of
motions order by order. To determine the time when the WKB and the asymptotic approximations
will be matched, we need to know the size of the error of the zeroth order solution for a given x. The
relative ratio of the correction term to the zeroth order solution gives the error, Easym(x) ∼ εk̄ x4/3. The
approximation will be best if we choose the intermediate time x∗ so that the accuracies of the two solution
match: EWKB = Easym, which gives x∗ = (εk̄3)−1. For simplicity, we choose to set x∗ = 1. Therefore,

the small expansion parameter becomes ε = k̄−3 =
(
Hi

k

)3/2
. Now, the size of error at x = x∗ becomes

Easym = k̄−2 = Hi/k, which ensures that the present approximation works well for high momentum
modes.

After the matching, we find that the power spectrum acquires corrections only when we calculate to
the adiabatic order O(k̄−12). The power spectrum including the corrections becomes

P =
Hi

2

4π2

{
1 +

9(11− 90r2 + 99r4)

32

(
Hi

k

)6

+O

((Hi

k

)7)}
. (8)

For mode with k ∼ 10Hi, the relative size of the correction term is of O(10−6). The isotropy violation
at initial stage of the universe is not small but its effects on the spectrum for the non-planar modes are
suppressed by the long duration of inflation and high momentum effect. The correction O((Hi/k)

6) is
highly dependent on k to suppress the anisotropy effect.

4 Planar modes

For the planar modes r2 ∼ 0, there appears a region where the WKB approximation may not be valid
during a period in εx ≫ 1. We divide the time into three separate regions divided by the times x1 and
x∗ (See Fig. 1). In the region x1 > x > x∗ the WKB approximation is valid. For other two regions, we
may find approximate solutions. In the case of r = 0 exactly, the adiabaticity parameter diverges in the
limit of x → ∞ and there is no anisotropic vacuum state. The mode r = 0 would behave classically, not
quantum mechanically, and will be out of scope.

The characteristic behavior of ϵ(x) is shown in Fig. 1.

Matching the solutions in the three regions yields the final amplitude and hence the power spectrum
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ϵ(x)

x∗x1xtop

x → ∞ x = 0

Bessel solutions WKB de Sitter

Figure 1: The behavior of the adiabatic parameter in the case of a planar mode. The left hand side
(x → ∞) corresponds to the past. The WKB approximation is temporary violated around x ≃ xtop.

obtained in the isotropic limit:

P =
(Hi

2π

)2(
cothπr̄ −

cos
(
2Ψ
)

sinhπr̄

)
, (9)

where Ψ(k) = k̄x
1/3
∗ −

∫ x∗
x1

Ω(x)dx+ q̄e−εx1 − π
4 . The explicit value of the correction term becomes order

of 10−3 for r̄ ∼ 3. In the planar limit, the deviation of the power spectrum from the ansatz in Ref. [2] is
quite clear.

5 Conclusion

We have reinvestigated the quantization of a massless and minimally coupled scalar field as a way to probe
the signature of pre-inflationary background anisotropy in the spectrum of cosmological perturbations.

We first dealt the non-planar modes. We have shown that the power spectrum of the scalar field
acquires non-vanishing corrections only when we execute the approximation up to 6th order. Hence, the
direction dependence appears only at the order O((Hi/k)

6).
For the planar mode, we have obtained essentially the same result as that in our previous analysis

[5, 6], but was confirmed by a more accurate matching. For such a mode, the temporal breaking of the
WKB approximation relatively enhances the effects of the primordial anisotropy in the power spectrum.
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